A081045
10th binomial transform of (1,9,0,0,0,0,0,...).
Original entry on oeis.org
1, 19, 280, 3700, 46000, 550000, 6400000, 73000000, 820000000, 9100000000, 100000000000, 1090000000000, 11800000000000, 127000000000000, 1360000000000000, 14500000000000000, 154000000000000000, 1630000000000000000, 17200000000000000000, 181000000000000000000
Offset: 0
-
[(9*n+10)*10^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
-
CoefficientList[Series[(1 - x)/(1 - 10 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
LinearRecurrence[{20,-100},{1,19},20] (* Harvey P. Dale, Dec 28 2023 *)
A081043
8th binomial transform of (1,7,0,0,0,0,0,...).
Original entry on oeis.org
1, 15, 176, 1856, 18432, 176128, 1638400, 14942208, 134217728, 1191182336, 10468982784, 91268055040, 790273982464, 6803228196864, 58274116272128, 496979255754752, 4222124650659840, 35747322042253312, 301741175033823232
Offset: 0
-
I:=[1, 15]; [n le 2 select I[n] else 16*Self(n-1)-64*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 23 2012
-
LinearRecurrence[{16,-64},{1,15},20] (* or *) Table[(7n+8)8^(n-1),{n,0,20}] (* Harvey P. Dale, Feb 22 2012 *)
A380747
Array read by ascending antidiagonals: A(n,k) = [x^n] (1 - x)/(1 - k*x)^2.
Original entry on oeis.org
1, -1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 8, 5, 1, 0, 1, 20, 21, 7, 1, 0, 1, 48, 81, 40, 9, 1, 0, 1, 112, 297, 208, 65, 11, 1, 0, 1, 256, 1053, 1024, 425, 96, 13, 1, 0, 1, 576, 3645, 4864, 2625, 756, 133, 15, 1, 0, 1, 1280, 12393, 22528, 15625, 5616, 1225, 176, 17, 1
Offset: 0
The array begins as:
1, 1, 1, 1, 1, 1, ...
-1, 1, 3, 5, 7, 9, ...
0, 1, 8, 21, 40, 65, ...
0, 1, 20, 81, 208, 425, ...
0, 1, 48, 297, 1024, 2625, ...
0, 1, 112, 1053, 4864, 15625, ...
0, 1, 256, 3645, 22528, 90625, ...
...
Cf.
A000012 (k=1 or n=0),
A000567 (n=2),
A001792 (k=2),
A007778,
A060747 (n=1),
A081038 (k=3),
A081039 (k=4),
A081040 (k=5),
A081041 (k=6),
A081042 (k=7),
A081043 (k=8),
A081044 (k=9),
A081045 (k=10),
A103532,
A154955,
A380748 (antidiagonal sums).
-
A[0,0]:=1; A[1,0]:=-1; A[n_,k_]:=((k-1)*n+k)k^(n-1); Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
A[n_,k_]:=SeriesCoefficient[(1-x)/(1-k*x)^2,{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
A[n_,k_]:=n!SeriesCoefficient[Exp[k*x](1+(k-1)*x),{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten
A380860
Triangle read by rows: T(n,m) (0<=m<=n) = number of positive n-digit numbers that have exactly m copies of a specific, previously selected positive base-10 digit among its digits.
Original entry on oeis.org
1, 8, 1, 72, 17, 1, 648, 225, 26, 1, 5832, 2673, 459, 35, 1, 52488, 29889, 6804, 774, 44, 1, 472392, 321489, 91125, 13770, 1170, 53, 1, 4251528, 3365793, 1141614, 215055, 24300, 1647, 62, 1, 38263752, 34543665, 13640319, 3077109, 433755, 39123, 2205, 71, 1, 344373768, 349156737, 157306536, 41334300, 6980904, 785862, 58968, 2844, 80, 1
Offset: 0
Rows n=0..7 of the triangle are:
1;
8, 1;
72, 17, 1;
648, 225, 26, 1;
5832, 2673, 459, 35, 1;
52488, 29889, 6804, 774, 44, 1;
472392, 321489, 91125, 13770, 1170, 53, 1;
4251528, 3365793, 1141614, 215055, 24300, 1647, 62, 1;
...
-
seq(lprint(seq(floor(9^(n-m)*(binomial(n-1, m-1)+(8/9)*binomial(n-1, m))), m=0..n)), n=0..7);
-
A380860[n_, m_] := Floor[9^(n-m)*(Binomial[n-1, m-1] + 8/9*Binomial[n-1, m])];
Table[A380860[n, m], {n, 0, 10}, {m, 0, n}] (* Paolo Xausa, Feb 07 2025 *)
Showing 1-4 of 4 results.
Comments