A081045
10th binomial transform of (1,9,0,0,0,0,0,...).
Original entry on oeis.org
1, 19, 280, 3700, 46000, 550000, 6400000, 73000000, 820000000, 9100000000, 100000000000, 1090000000000, 11800000000000, 127000000000000, 1360000000000000, 14500000000000000, 154000000000000000, 1630000000000000000, 17200000000000000000, 181000000000000000000
Offset: 0
-
[(9*n+10)*10^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
-
CoefficientList[Series[(1 - x)/(1 - 10 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
LinearRecurrence[{20,-100},{1,19},20] (* Harvey P. Dale, Dec 28 2023 *)
A081044
9th binomial transform of (1,8,0,0,0,0,0,0,.....).
Original entry on oeis.org
1, 17, 225, 2673, 29889, 321489, 3365793, 34543665, 349156737, 3486784401, 34480423521, 338218086897, 3295011258945, 31914537622353, 307565765227809, 2951106226689969, 28207085096966913, 268687927383516945
Offset: 0
-
Table[(8n+9)9^(n-1),{n,0,30}] (*or*) LinearRecurrence[{18, -81}, {1, 17}, 40] (* Vincenzo Librandi, Feb 23 2012 *)
-
a(n) = (8*n+9)*9^(n-1); \\ Altug Alkan, Jul 18 2016
A380747
Array read by ascending antidiagonals: A(n,k) = [x^n] (1 - x)/(1 - k*x)^2.
Original entry on oeis.org
1, -1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 8, 5, 1, 0, 1, 20, 21, 7, 1, 0, 1, 48, 81, 40, 9, 1, 0, 1, 112, 297, 208, 65, 11, 1, 0, 1, 256, 1053, 1024, 425, 96, 13, 1, 0, 1, 576, 3645, 4864, 2625, 756, 133, 15, 1, 0, 1, 1280, 12393, 22528, 15625, 5616, 1225, 176, 17, 1
Offset: 0
The array begins as:
1, 1, 1, 1, 1, 1, ...
-1, 1, 3, 5, 7, 9, ...
0, 1, 8, 21, 40, 65, ...
0, 1, 20, 81, 208, 425, ...
0, 1, 48, 297, 1024, 2625, ...
0, 1, 112, 1053, 4864, 15625, ...
0, 1, 256, 3645, 22528, 90625, ...
...
Cf.
A000012 (k=1 or n=0),
A000567 (n=2),
A001792 (k=2),
A007778,
A060747 (n=1),
A081038 (k=3),
A081039 (k=4),
A081040 (k=5),
A081041 (k=6),
A081042 (k=7),
A081043 (k=8),
A081044 (k=9),
A081045 (k=10),
A103532,
A154955,
A380748 (antidiagonal sums).
-
A[0,0]:=1; A[1,0]:=-1; A[n_,k_]:=((k-1)*n+k)k^(n-1); Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
A[n_,k_]:=SeriesCoefficient[(1-x)/(1-k*x)^2,{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
A[n_,k_]:=n!SeriesCoefficient[Exp[k*x](1+(k-1)*x),{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten
Showing 1-3 of 3 results.
Comments