A125175 Triangle T(n,k) = |A053123(n/2+k/2,k)| for even n+k, T(n,k)= A082985((n+k-1)/2,k) for odd n+k; read by rows, 0<=k<=n.
1, 1, 2, 1, 3, 3, 1, 4, 5, 4, 1, 5, 10, 7, 5, 1, 6, 14, 20, 9, 6, 1, 7, 21, 30, 35, 11, 7, 1, 8, 27, 56, 55, 56, 13, 8, 1, 9, 36, 77, 126, 91, 84, 15, 9, 1, 10, 44, 120, 182, 252, 140, 120, 17, 10, 1, 11, 55, 156, 330, 378, 462, 204, 165, 19, 11
Offset: 0
Examples
First few rows of the triangle are: 1; 1, 2; 1, 3, 3; 1, 4, 5, 4; 1, 5, 10, 7, 5; 1, 6, 14, 20, 9, 6; 1, 7, 21, 30, 35, 11, 7; 1, 8, 27, 56, 55, 56, 13, 8; 1, 9, 36, 77, 126, 91, 84, 15, 9; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Magma
[[ k eq n select n+1 else (n+k mod 2) eq 0 select Binomial(n+1,k) else Binomial(n-1, k)*(n+k)/(n-k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Jun 05 2019
-
Maple
A125175 := proc(n,k) if type(n+k,'even') then binomial(n+1,k) ; else binomial(n-1,k)*(n+k)/(n-k) ; end if; end proc: # R. J. Mathar, Sep 08 2013
-
Mathematica
Table[If[EvenQ[n+k], Binomial[n+1, k], Binomial[n-1, k]*(n+k)/(n-k)], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 05 2019 *)
-
PARI
{T(n,k) = if((n+k)%2==0, binomial(n+1,k), binomial(n-1, k)* (n+k)/(n-k))}; \\ G. C. Greubel, Jun 05 2019
-
Sage
def T(n, k): if (mod(n+k,2)==0): return binomial(n+1,k) else: return binomial(n-1, k)* (n+k)/(n-k) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jun 05 2019
Formula
T(n,k) = binomial(n+1,k) if n+k even. T(n,k) = binomial(n-1,k)*(n+k)/(n-k) if n+k odd. - R. J. Mathar, Sep 08 2013
Comments