A053186 Square excess of n: difference between n and largest square <= n.
0, 0, 1, 2, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- H. Bottomley, Illustration of A000196, A048760, A053186
- J. J. O'Connor, E. F. Robertson.The Bakhshali manuscript, Historical Topics, St Andrews University.
- Michael Somos, Sequences used for indexing triangular or square arrays
- S. H. Weintraub, An interesting recursion, Amer. Math. Monthly, 111 (No. 6, 2004), 528-530.
- Wikipedia, Bakhshali manuscript
Crossrefs
Programs
-
Haskell
a053186 n = n - a048760 n a053186_list = f 0 0 (map fst $ iterate (\(y,z) -> (y+z,z+2)) (0,1)) where f e x ys'@(y:ys) | x < y = e : f (e + 1) (x + 1) ys' | x == y = 0 : f 1 (x + 1) ys -- Reinhard Zumkeller, Apr 27 2012
-
Maple
A053186 := proc(n) n-(floor(sqrt(n)))^2 ; end proc;
-
Mathematica
f[n_] := n - (Floor@ Sqrt@ n)^2; Table[f@ n, {n, 0, 94}] (* Robert G. Wilson v, Jan 23 2009 *)
-
PARI
A053186(n)= { if(n<0,0,n-sqrtint(n)^2) }
Formula
a(n) = n - A048760(n) = n - floor(sqrt(n))^2.
a(n) = f(n,1) with f(n,m) = if n < m then n else f(n-m,m+2). - Reinhard Zumkeller, May 20 2009
Comments