cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053198 Totients of consecutive pure powers of primes.

Original entry on oeis.org

2, 4, 6, 8, 20, 18, 16, 42, 32, 54, 110, 100, 64, 156, 162, 128, 272, 294, 342, 256, 506, 500, 486, 812, 930, 512, 1210, 1332, 1640, 1806, 1024, 1458, 2028, 2162, 2058, 2756, 2500, 3422, 3660, 2048, 4422, 4624, 4970, 5256, 6162, 4374, 6498, 6806, 7832, 4096
Offset: 1

Views

Author

Labos Elemer, Mar 03 2000

Keywords

Comments

Totients of prime powers are prime powers only for powers of 2.

Examples

			The 10th pure power of prime (but not a prime) is 81, so a(10) = EulerPhi(81) = 54.
		

Crossrefs

Programs

  • Mathematica
    EulerPhi[Select[Range[2^13], CompositeQ[#] && PrimePowerQ[#] &]] (* Amiram Eldar, Dec 21 2020 *)

Formula

a(n) = A000010(A025475(n+1)).
Numbers of the form phi(p^k) = (p-1)*p^(k-1), where p is prime and k > 1.
Sum_{n>=1} 1/a(n) = Sum_{p prime} 1/(p-1)^2 = A086242 = 1.3750649947... - Amiram Eldar, Dec 21 2020