A053314 a(n) contains n digits (either '1' or '4') and is divisible by 2^n.
4, 44, 144, 4144, 14144, 414144, 1414144, 41414144, 441414144, 1441414144, 11441414144, 411441414144, 4411441414144, 44411441414144, 444411441414144, 1444411441414144, 41444411441414144, 441444411441414144
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..999
Programs
-
Maple
A[1]:= 4: for n from 2 to 100 do if A[n-1] mod 2^n = 0 then A[n]:= A[n-1]+4*10^(n-1) else A[n]:= A[n-1]+10^(n-1) fi od: seq(A[i],i=1..100); # Robert Israel, Oct 27 2019
-
Mathematica
nxt[{n_,a_}]:={n+1,If[Divisible[a,2^(n+1)],4*10^IntegerLength[a]+ a, 10^IntegerLength[ a]+a]}; NestList[nxt,{1,4},20][[All,2]] (* Harvey P. Dale, Oct 30 2022 *)
Formula
a(n) = a(n-1) + 10^(n-1)*(4 - 3*(a(n-1)/2^(n-1) mod 2)), i.e., a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 4, if not then n-th term begins with a 1.
Extensions
Formula corrected by Robert Israel, Oct 27 2019