A053315 a(n) contains n digits (either '4' or '5') and is divisible by 2^n.
4, 44, 544, 4544, 44544, 444544, 4444544, 54444544, 454444544, 5454444544, 45454444544, 545454444544, 5545454444544, 55545454444544, 555545454444544, 4555545454444544, 44555545454444544, 544555545454444544
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..999
Programs
-
Maple
A[1]:= 4: for n from 2 to 100 do if A[n-1] mod 2^n = 0 then A[n]:= A[n-1]+4*10^(n-1) else A[n]:= A[n-1]+5*10^(n-1) fi od: seq(A[i],i=1..100); # Robert Israel, Oct 27 2019
Formula
a(n) = a(n-1) + 10^(n-1)*(4 + (a(n-1)/2^(n-1) mod 2)), i.e., a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 4, if not then n-th term begins with a 5.
Extensions
Formula corrected by Robert Israel, Oct 27 2019