A053341 Euclid-Pocklington primes: primes of the form Product_{i=1..k} prime(i) * prime(k+1)^m + 1 where prime(r) is the r-th prime and Product_{i=1..k} prime(i) < prime(k+1)^m.
3, 5, 7, 17, 19, 151, 163, 257, 487, 751, 1459, 1471, 39367, 65537, 72031, 279511, 33820711, 86093443, 258280327, 372027811, 4092305911, 11149928791, 42638305711, 209481995953231, 411782264189299, 3561193931204911
Offset: 1
Examples
5 = 2^2+1 is of this form (with k=0).
Links
- Donovan Johnson, Table of n, a(n) for n = 1..454
Crossrefs
Cf. A006862.
Programs
-
Mathematica
eucpock[max_] := Module[{p = 1, prod = 1, m, q, r, s = {}}, While[prod < max, prod *= p; q = NextPrime[p]; m = Max[1, Ceiling @ Log[q, prod]]; r = prod * q^m; While[r + 1 <= max, If[PrimeQ[r + 1], AppendTo[s, r + 1]]; r *= q]; p = NextPrime[p]]; Union[s]]; eucpock[10^16] (* Amiram Eldar, Jun 24 2021 *)
Extensions
More terms from Jud McCranie, Jul 11 2000
Comments