A053373 Write fundamental unit for real quadratic field of discriminant n as x + y*omega; sequence gives values of y for n == 1 (mod 4).
1, 1, 2, 1, 1, 8, 2, 10, 1, 40, 5, 2, 3, 250, 1, 1, 106, 3, 1138, 2, 8, 25, 146, 2968, 15, 298, 16, 2, 5, 17, 1856, 1, 1, 9384, 97, 10, 253970, 2, 72664, 3, 6440, 5, 521904, 1, 1, 3034, 5, 9148450, 1084152, 117, 2, 746, 10, 88, 157, 126890, 1, 1, 1311, 56, 287
Offset: 1
References
- R. A. Mollin, Quadratics, CRC Press, 1996, Tables B1-B3.
Links
- Emmanuel Vantieghem, Table of n, a(n) for n=1..1000
- S. R. Finch, Class number theory
- Steven R. Finch, Class number theory [Cached copy, with permission of the author]
Programs
-
Mathematica
2*NumberFieldFundamentalUnits[ Sqrt[#] ][[1, 2, 2]] & /@ Select[ Range[5, 309, 4], SquareFreeQ ] (* Jean-François Alcover, Jul 09 2013 *)
-
PARI
forstep(n=5,1000,4, if(!issquarefree(n),next); print1( 2*polcoeff(lift(bnfinit(x^2-n).fu[1]),1), ", " )) /* Max Alekseyev */
Comments