cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053383 Triangle T(n,k) giving denominator of coefficient of x^(n-k) in Bernoulli polynomial B(n, x), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 2, 1, 1, 6, 1, 2, 2, 1, 1, 1, 1, 1, 30, 1, 2, 3, 1, 6, 1, 1, 1, 2, 1, 2, 1, 42, 1, 2, 2, 1, 6, 1, 6, 1, 1, 1, 3, 1, 3, 1, 3, 1, 30, 1, 2, 1, 1, 5, 1, 1, 1, 10, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 66, 1, 2, 6, 1, 1, 1, 1, 1, 2, 1, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2730, 1, 2, 1, 1, 6, 1, 7, 1, 10, 1, 3, 1, 210, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jan 06 2000

Keywords

Examples

			The polynomials B(0,x), B(1,x), B(2,x), ... are 1; x - 1/2; x^2 - x + 1/6; x^3 - (3/2)*x^2 + (1/2)*x; x^4 - 2*x^3 + x^2 - 1/30; x^5 - (5/2)*x^4 + (5/3)*x^3 - (1/6)*x; x^6 - 3*x^5 + (5/2)*x^4 - (1/2)*x^2 + 1/42; ...
Triangle A053382/A053383 begins:
  1;
  1, -1/2;
  1,  -1,  1/6;
  1, -3/2, 1/2, 0;
  1,  -2,   1,  0, -1/30;
  1, -5/2, 5/3, 0, -1/6, 0;
  1,  -3,  5/2, 0, -1/2, 0, 1/42;
  ...
Triangle A196838/A196839 begins (this is the reflected version):
    1;
  -1/2,   1;
   1/6,  -1,    1;
    0,   1/2, -3/2,  1;
  -1/30,  0,    1,  -2,    1;
    0,  -1/6,   0,  5/3, -5/2,  1;
   1/42,  0,  -1/2,  0,   5/2, -3, 1;
  ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 48, [14a].
  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 53.
  • H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 19, equations 19:4:1 - 19:4:8 at page 169.

Crossrefs

Three versions of coefficients of Bernoulli polynomials: A053382/A053383; for reflected version see A196838/A196839; see also A048998 and A048999.
Cf. A144845 (lcm of row n).

Programs

  • Maple
    with(ListTools): with(PolynomialTools):
    CoeffList := p -> Reverse(CoefficientList(p, x)):
    Trow := n -> denom(CoeffList(bernoulli(n, x))):
    Flatten([seq(Trow(n), n = 0..13)]); # Peter Luschny, Apr 10 2021
  • Mathematica
    t[n_, k_] := Denominator[ Coefficient[ BernoulliB[n, x], x, n - k]]; Flatten[ Table[t[n, k], {n, 0, 13}, {k, 0, n}]] (* Jean-François Alcover, Jan 15 2013 *)
  • PARI
    v=[];for(n=0,6,v=concat(v,apply(denominator,Vec(bernpol(n)))));v \\ Charles R Greathouse IV, Jun 08 2012

Extensions

More terms from James Sellers, Jan 10 2000