A053398 Nim-values from game of Kopper's Nim.
0, 1, 1, 0, 1, 0, 2, 2, 2, 2, 0, 2, 0, 2, 0, 1, 1, 2, 2, 1, 1, 0, 1, 0, 2, 0, 1, 0, 3, 3, 3, 3, 3, 3, 3, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 0, 2, 0, 2, 0, 3, 0, 3, 0, 2, 0, 2, 0, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1
Offset: 1
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
Crossrefs
Programs
-
Haskell
a053398 :: Int -> Int -> Int a053398 n k = a007814 $ a003986 (n - 1) (k - 1) + 1 a053398_row n = map (a053398 n) [1..n] a053398_tabl = map a053398_row [1..] -- Reinhard Zumkeller, Aug 04 2014
Formula
a(x, y) = place of last zero bit of (x-1) OR (y-1).
Comments