A053461 a(0) = 0; a(n) = a(n-1) - n^2 if positive and new, otherwise a(n) = a(n-1) + n^2.
0, 1, 5, 14, 30, 55, 19, 68, 4, 85, 185, 64, 208, 39, 235, 10, 266, 555, 231, 592, 192, 633, 149, 678, 102, 727, 51, 780, 1564, 723, 1623, 662, 1686, 597, 1753, 528, 1824, 455, 1899, 378, 1978, 297, 2061, 212, 2148, 123, 2239, 4448, 2144, 4545
Offset: 0
Links
- Samuel Harkness, Table of n, a(n) for n = 0..10000
- Nick Hobson, Python program for this sequence
- Index entries for sequences related to Recamán's sequence
Crossrefs
Programs
-
Mathematica
a = {0, 1}; Do[If[a[[-1]] - n^2 >= 0 && Position[a, a[[-1]] - n^2] == {}, a = Append[a, a[[-1]] - n^2], a = Append[a, a[[-1]] + n^2]], {n, 2, 49}]; Print[a] (* Samuel Harkness, Sep 20 2022 *)
-
PARI
lista(nn) = {my(va = vector(nn)); va[1] = 1; my(sa = Set(va)); for (n=2, nn, my(x = va[n-1] - n^2); if ((x>0) && !setsearch(sa, x), va[n] = x, va[n] = va[n-1] + n^2); sa = Set(va);); concat(0, va);} \\ Michel Marcus, Sep 26 2022
Comments