cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053493 Number of symmetric 4 X 4 matrices of nonnegative integers with every row and column adding to n.

Original entry on oeis.org

1, 10, 56, 214, 641, 1620, 3616, 7340, 13825, 24510, 41336, 66850, 104321, 157864, 232576, 334680, 471681, 652530, 887800, 1189870, 1573121, 2054140, 2651936, 3388164, 4287361, 5377190, 6688696, 8256570, 10119425, 12320080, 14905856, 17928880, 21446401
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000; definition revised Jul 06 2014

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986; see Prop. 4.6.21, p. 235, G_4(lambda).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+4x+10x^2+4x^3+x^4)/((1-x)^7(1+x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{6,-14,14,0,-14,14,-6,1},{1,10,56,214,641,1620,3616,7340},30] (* Harvey P. Dale, Oct 31 2011 *)
  • PARI
    Vec((1+4*x+10*x^2+4*x^3+x^4) / ((1-x)^7*(1+x)) + O(x^40)) \\ Colin Barker, Jan 14 2017

Formula

G.f.: (1+4*x+10*x^2+4*x^3+x^4)/((1-x)^7*(1+x)).
a(0)=1, a(1)=10, a(2)=56, a(3)=214, a(4)=641, a(5)=1620, a(6)=3616, a(7)=7340, a(n) = 6*a(n-1) - 14*a(n-2) + 14*a(n-3) - 14*a(n-5) + 14*a(n-6) - 6*a(n-7) + a(n-8). - Harvey P. Dale, Oct 31 2011
a(n) = (9*(31+(-1)^n) + 768*n + 928*n^2 + 624*n^3 + 238*n^4 + 48*n^5 + 4*n^6) / 288. - Colin Barker, Jan 14 2017