A053493 Number of symmetric 4 X 4 matrices of nonnegative integers with every row and column adding to n.
1, 10, 56, 214, 641, 1620, 3616, 7340, 13825, 24510, 41336, 66850, 104321, 157864, 232576, 334680, 471681, 652530, 887800, 1189870, 1573121, 2054140, 2651936, 3388164, 4287361, 5377190, 6688696, 8256570, 10119425, 12320080, 14905856, 17928880, 21446401
Offset: 0
References
- R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986; see Prop. 4.6.21, p. 235, G_4(lambda).
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- L. Carlitz, Enumeration of symmetric arrays, Duke Math. J., Vol. 33 (1966), 771-782. MR0201332 (34 #1216).
- R. P. Stanley, Magic labelings of graphs, symmetric magic squares,..., Duke Math. J. 43 (3) (1976) 511-531, F_4(x) in section 5.
- Index entries for linear recurrences with constant coefficients, signature (6,-14,14,0,-14,14,-6,1).
Programs
-
Mathematica
CoefficientList[Series[(1+4x+10x^2+4x^3+x^4)/((1-x)^7(1+x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{6,-14,14,0,-14,14,-6,1},{1,10,56,214,641,1620,3616,7340},30] (* Harvey P. Dale, Oct 31 2011 *)
-
PARI
Vec((1+4*x+10*x^2+4*x^3+x^4) / ((1-x)^7*(1+x)) + O(x^40)) \\ Colin Barker, Jan 14 2017
Formula
G.f.: (1+4*x+10*x^2+4*x^3+x^4)/((1-x)^7*(1+x)).
a(0)=1, a(1)=10, a(2)=56, a(3)=214, a(4)=641, a(5)=1620, a(6)=3616, a(7)=7340, a(n) = 6*a(n-1) - 14*a(n-2) + 14*a(n-3) - 14*a(n-5) + 14*a(n-6) - 6*a(n-7) + a(n-8). - Harvey P. Dale, Oct 31 2011
a(n) = (9*(31+(-1)^n) + 768*n + 928*n^2 + 624*n^3 + 238*n^4 + 48*n^5 + 4*n^6) / 288. - Colin Barker, Jan 14 2017