cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A053548 Number of ternary Lyndon words of length n with trace 0 and subtrace 0 over GF(3).

Original entry on oeis.org

1, 0, 0, 2, 4, 9, 32, 90, 240, 654, 1804, 4950, 13664, 37944, 106272, 298890, 843796, 2390595, 6796160, 19370696, 55345680, 158489298, 454803100, 1307556162, 3765741324, 10862667648, 31381058880, 90780903460, 262951527460
Offset: 1

Views

Author

Frank Ruskey, Jan 16 2000

Keywords

Comments

Trace is sum of digits, subtrace is sum of products of pairs of digits. [3|n] above is "Iversonian convention", 1 if 3|n, 0 otherwise.

Examples

			a(4) = 2 = |{ 0111, 0222 }|
		

Crossrefs

Formula

a(n) = (1/n) * Sum_{d divides n, d==1, 2(3)} mu(d) * (M(n/d, 0, 0)-[3*d divides n] * 3^{n/(3*d)}), where M(n, t, s) = Sum_{i+j+k=n, j=t(3), k=s(3)} n!/(i!*j!*k!). [Corrected by Sean A. Irvine, Dec 27 2021]

A053560 Number of ternary Lyndon words of length n with trace 0 and subtrace 1 over GF(3).

Original entry on oeis.org

0, 0, 0, 1, 6, 14, 36, 93, 252, 661, 1782, 4893, 13608, 37890, 106142, 298755, 844182, 2391732, 6797196, 19371684, 55348596, 158491993, 454795398, 1307534319, 3765720066, 10862647236, 31381000560, 90780846494, 262951692390
Offset: 1

Views

Author

Frank Ruskey, Jan 17 2000

Keywords

Examples

			a(4) = 1 = |{ 1122 }|
		

Crossrefs

Formula

(1/n) Sum mu(d) M(n/d, 2, 2); d|n, d=1(3) + (1/n) Sum mu(d) M(n/d, 1, 1); d|n, d=2(3), where M(n, t, s) = Sum n!/(i!j!k!); i+j+k=n, j=t(3), k=s(3)

A053561 Number of ternary Lyndon words of length n with trace 0 and subtrace 2 over GF(3).

Original entry on oeis.org

0, 1, 2, 3, 6, 15, 36, 87, 234, 645, 1782, 4893, 13608, 37994, 106434, 299025, 844182, 2391723, 6797196, 19369708, 55342972, 158486625, 454795398, 1307534319, 3765720066, 10862688116, 31381118658, 90780960426, 262951692390
Offset: 1

Views

Author

Frank Ruskey, Jan 17 2000

Keywords

Examples

			a(4) = 3 = |{ 0012, 0021, 0102 }|
		

Crossrefs

Formula

(1/n) Sum mu(d) M(n/d, 1, 1); d divides n, d=1(3) + (1/n) Sum mu(d) M(n/d, 2, 2); d divides n, d=2(3) where M(n, t, s) = Sum n!/(i!j!k!); i+j+k=n, j=t(3), k=s(3)

A053563 Number of ternary Lyndon words of length n with trace 1 and subtrace 1 over GF(3). Same as the number of ternary Lyndon words of length n with trace 2 and subtrace 1 over GF(3).

Original entry on oeis.org

0, 0, 1, 1, 4, 13, 36, 90, 243, 661, 1804, 4914, 13608, 37944, 106288, 298755, 843796, 2391363, 6797196, 19370696, 55345784, 158491993, 454803100, 1307541690, 3765720066, 10862667648, 31381059609, 90780846494, 262951527460
Offset: 1

Views

Author

Frank Ruskey, Jan 17 2000

Keywords

Examples

			a(4) = 1 = |{ 0022 }|
		

Crossrefs

Formula

(1/n) Sum mu(d) M(n/d, 0, 2); d|n, d=1(3) + (1/n) Sum mu(d) M(n/d, 0, 1); d|n, d=2(3) where M(n, t, s) = Sum n!/(i!j!k!); i+j+k=n, j=t(3), k=s(3).

A053564 Number of ternary Lyndon words of length n with trace 1 and subtrace 2 over GF(3). Same as the number of ternary Lyndon words of length n with trace 2 and subtrace 2 over GF(3).

Original entry on oeis.org

0, 0, 1, 3, 6, 13, 36, 93, 243, 645, 1782, 4914, 13608, 37890, 106288, 299025, 844182, 2391363, 6797196, 19371684, 55345784, 158486625, 454795398, 1307541690, 3765720066, 10862647236, 31381059609, 90780960426, 262951692390
Offset: 1

Views

Author

Frank Ruskey, Jan 17 2000

Keywords

Examples

			a(4) = 3 = |{ 0112, 0121, 0211 }|
		

Crossrefs

Formula

(1/n) Sum mu(d) M(n/d, 1, 2); d|n, d=1, 2(3) where M(n, t, s) = Sum n!/(i!j!k!); i+j+k=n, j=t(3), k=s(3).
Showing 1-5 of 5 results.