cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A053578 Values of cototient function for A053577.

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 4, 1, 8, 1, 8, 8, 1, 1, 1, 16, 16, 1, 1, 16, 1, 1, 1, 1, 32, 1, 32, 1, 1, 32, 32, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 64, 1, 64, 1, 64, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 128, 1, 1, 1, 1, 1, 128, 1, 1, 1, 1, 1, 128, 1, 128, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Jan 18 2000

Keywords

Comments

Except for 2^0 = 1, there are only finitely many values of k such that cototient(k) = 2^m for fixed m.

Examples

			For p prime, cototient(p) = 1. Smallest values for which cototient(x) = 2^w are A058764(w) = A007283(w-1) = 3*2^(w-1) = 6, 12, 24, 48, 96, 192, .., 49152 for w = 2, 3, 4, 5, 6, ..., 15. [Corrected by _M. F. Hasler_, Nov 10 2016]
		

Crossrefs

Programs

  • Mathematica
    Select[Table[k - EulerPhi[k], {k, 1, 400}], # == 2^IntegerExponent[#, 2] &] (* Amiram Eldar, Jun 09 2024 *)
  • PARI
    lista(kmax) = {my(c); for(k = 2, kmax, c = k - eulerphi(k); if(c >> valuation(c, 2) == 1, print1(c, ", ")));} \\ Amiram Eldar, Jun 09 2024

Extensions

Edited and corrected by M. F. Hasler, Nov 10 2016

A053159 Numbers n such that n+cototient(n) is a power of 2.

Original entry on oeis.org

1, 3, 7, 10, 20, 31, 40, 80, 127, 160, 320, 322, 640, 644, 1280, 1288, 2560, 2576, 5120, 5152, 8191, 10240, 10304, 20480, 20608, 40960, 41216, 81920, 82432, 131071, 163840, 164864, 327680, 329728, 333634, 524287, 655360, 659456, 667268, 1310720, 1318912
Offset: 1

Views

Author

Labos Elemer, Feb 29 2000

Keywords

Comments

See especially A053579 and also A053576, A053577.

Examples

			Mersenne primes are a proper subset of this sequence: A(M)=2M-M+1=M+1=2^p
		

Crossrefs

Programs

  • PARI
    print(1); for(n=3, 10^9, if(omega(2*n-eulerphi(n))==1, print(n))) /* Donovan Johnson, Apr 04 2013 */

Formula

a(n)+A051953(n) = 2*a(n)-A000010(n) = 2^w for some w.

Extensions

More terms from Reiner Martin, Dec 24 2001

A053162 Nonprimes n such that n+cototient(n) is a power of 2.

Original entry on oeis.org

1, 10, 20, 40, 80, 160, 320, 322, 640, 644, 1280, 1288, 2560, 2576, 5120, 5152, 10240, 10304, 20480, 20608, 40960, 41216, 81920, 82432, 163840, 164864, 327680, 329728, 333634, 655360, 659456, 667268, 1310720, 1318912, 1334536, 1378114, 2621440
Offset: 1

Views

Author

Labos Elemer, Feb 29 2000

Keywords

Comments

See especially A053579 and also A053576, A053577.

Examples

			Mersenne primes were deleted from set of numbers with similar property. An infinite subset here is m(r)=5*2^r, since Phi[m(r)]=2^(r+1) and a(m(r))=5*2^(r+1)-2^(r+1)=2^(r+3). A different subset includes m = 322,644,1288,.. = Set of {(2^s)*7*23} generating 2^(s+8)=2m-Phi(m) powers of 2.
		

Crossrefs

Programs

  • PARI
    for(n=1, 2621440, if(isprime(n)==0, if(omega((2*n-eulerphi(n))*2)==1, print1(n ", ")))) \\ Donovan Johnson, Jan 09 2014

Formula

a(n)+A051953(n) = 2*a(n)-A000010(n) = 2^w for some w and a(n).

Extensions

More terms from Olaf Voß, Feb 25 2008

A053163 n+cototient(n) produces these powers of 2 in order of magnitude.

Original entry on oeis.org

1, 4, 8, 16, 32, 32, 64, 128, 128, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 8192, 8192, 8192, 16384, 16384, 32768, 32768, 65536, 65536, 131072, 131072, 131072, 262144, 262144, 524288, 524288, 524288, 524288, 1048576, 1048576, 1048576, 2097152
Offset: 1

Views

Author

Labos Elemer, Feb 29 2000

Keywords

Comments

See especially A053579 and also A053576, A053577.

Examples

			1+Mersenne primes powers of 2 are here, 2^p for special primes. Also because of other (infinite) subsequences, all 2-powers from 2^6 occurs at least twice.
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Reap[For[n=3, n<10^7, n++, If[PrimeNu[k = 2*n - EulerPhi[n]] == 1, Print[k]; Sow[k]]]][[2, 1]]] (* Jean-François Alcover, Jun 30 2015, after Donovan Johnson *)
  • PARI
    print(1); for(n=3, 10^9, k=2*n-eulerphi(n); if(omega(k)==1, print(k))) /* Donovan Johnson, Apr 04 2013 */

Formula

a(n) = 2^w = m+A051953(m) = 2*m-A000010(m) for some m.

Extensions

More terms from Olaf Voß, Feb 25 2008
Showing 1-4 of 4 results.