A053579 Composite numbers whose cototient (A051953) is a power of 2.
4, 6, 8, 12, 14, 16, 24, 28, 32, 48, 56, 62, 64, 96, 112, 124, 128, 192, 224, 248, 254, 256, 384, 448, 496, 508, 512, 768, 896, 992, 1016, 1024, 1536, 1792, 1984, 2032, 2048, 3072, 3584, 3968, 4064, 4096, 6144, 7168, 7936, 8128, 8192, 12288, 14336
Offset: 1
Keywords
Examples
If n = 3*2^s, cototient(n) = 3*2^s-2*2^(s-1)=2^(s+1); if n = 7*2^s, cototient(n) = (7-6)*2^(s-1) = 2^(s+2). If cototient(x) = 32768, then arguments are 3*16384, 7*8192, 31*2048, 127*512, 8191*8 and 65536. If n = (2^w)*q, where q is a Mersenne prime, then phi(n) = (q-1)*2^(w-1) and the cototient(n) = 2^(w-1)*(2q-q+1) = 2^(w-1)*(q+1) = 2^(w-1+s).
Links
- Jud McCranie, Table of n, a(n) for n = 1..316 (First 235 terms from _Donovan Johnson_)
Crossrefs
Cf. A051953.
Programs
-
Mathematica
Select[Range[4, 15000], And[CompositeQ@ #, IntegerQ@ Log2[# - EulerPhi@ #]] &] (* Michael De Vlieger, Mar 05 2017 *)
-
PARI
isok(n) = !isprime(n) && (c = (n - eulerphi(n))) && ((c == 2) || (ispower(c, ,&x) && (x == 2))); \\ Michel Marcus, Dec 17 2013