cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053582 a(n+1) is the smallest prime ending with a(n), where a(1)=1.

Original entry on oeis.org

1, 11, 211, 4211, 34211, 234211, 4234211, 154234211, 3154234211, 93154234211, 2093154234211, 42093154234211, 342093154234211, 11342093154234211, 3111342093154234211, 63111342093154234211, 2463111342093154234211, 232463111342093154234211
Offset: 1

Views

Author

G. L. Honaker, Jr., Jan 18 2000

Keywords

Examples

			The least prime ending with seed 1 is 11; the least prime ending with 11 is 211; the least prime ending with 211 is 4211. - _Clark Kimberling_, Sep 17 2015
		

Crossrefs

Programs

  • Maple
    R:= 1: v:= 1:
    for iter from 1 to 30 do
    d:= ilog10(v)+1;
    for x from v+10^d by 10^d do
      if isprime(x) then R:= R, x; v:= x; break fi
    od
    od:
    R; # Robert Israel, Sep 24 2020
  • Mathematica
    f[n_] := f[n] = Block[{j = f[n - 1], k = 1, l = Floor[Log[10, f[n - 1]] + 1]},   While[m = k*10^l + j; ! PrimeQ@ m, k++ ]; m]; f[1] = 1; Array[f, 17]
    nxt[n_]:=Module[{k=1,p=10^IntegerLength[n]},While[!PrimeQ[k*p+n],k++];k*p+n]; NestList[nxt,1,20] (* Harvey P. Dale, Jul 14 2016 *)
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(an=1): # generator of terms
        while True:
            yield an
            pow10 = 10**len(str(an))
            for t in count(pow10+an, step=pow10):
                if isprime(t):
                    an = t
                    break
    print(list(islice(agen(), 18))) # Michael S. Branicky, Jun 23 2022

Extensions

a(14)-a(17) corrected by Robert G. Wilson v, Dec 07 2010