A053600 a(1) = 2; for n>=1, a(n+1) is the smallest palindromic prime with a(n) as a central substring.
2, 727, 37273, 333727333, 93337273339, 309333727333903, 1830933372733390381, 92183093337273339038129, 3921830933372733390381293, 1333921830933372733390381293331, 18133392183093337273339038129333181
Offset: 1
Examples
As a triangle: .........2 ........727 .......37273 .....333727333 ....93337273339 ..309333727333903 1830933372733390381
References
- G. L. Honaker, Jr. and Chris K. Caldwell, Palindromic Prime Pyramids, J. Recreational Mathematics, Vol. 30(3) 169-176, 1999-2000.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..200
- P. De Geest, Palindromic Prime Pyramid Puzzle by G.L.Honaker,Jr
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 18133...33181 (35-digits)
- G. L. Honaker, Jr. & C. K. Caldwell, Palindromic Prime Pyramids
- G. L. Honaker, Jr. & C. K. Caldwell, Supplement to "Palindromic Prime Pyramids"
- Ivars Peterson, Primes, Palindromes, and Pyramids, Science News.
- Inder J. Taneja, Palindromic Prime Embedded Trees, RGMIA Res. Rep. Coll. 20 (2017), Art. 124.
- Inder J. Taneja, Same Digits Embedded Palprimes, RGMIA Research Report Collection (2018) Vol. 21, Article 75, 1-47.
Programs
-
Mathematica
d[n_] := IntegerDigits[n]; t = {x = 2}; Do[i = 1; While[! PrimeQ[y = FromDigits[Flatten[{z = d[i], d[x], Reverse[z]}]]], i++]; AppendTo[t, x = y], {n, 10}]; t (* Jayanta Basu, Jun 24 2013 *)
-
Python
from gmpy2 import digits, mpz, is_prime A053600_list, p = [2], 2 for _ in range(30): m, ps = 1, digits(p) s = mpz('1'+ps+'1') while not is_prime(s): m += 1 ms = digits(m) s = mpz(ms+ps+ms[::-1]) p = s A053600_list.append(int(p)) # Chai Wah Wu, Apr 09 2015