A053727 Triangle T(n,k) = Sum_{d|gcd(n,k)} mu(d)*C(n/d,k/d) (n >= 1, 1 <= k <= n).
1, 2, 0, 3, 3, 0, 4, 4, 4, 0, 5, 10, 10, 5, 0, 6, 12, 18, 12, 6, 0, 7, 21, 35, 35, 21, 7, 0, 8, 24, 56, 64, 56, 24, 8, 0, 9, 36, 81, 126, 126, 81, 36, 9, 0, 10, 40, 120, 200, 250, 200, 120, 40, 10, 0, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 0, 12, 60
Offset: 1
Examples
Triangle begins 1; 2, 0; 3, 3, 0; 4, 4, 4, 0; 5, 10, 10, 5, 0; 6, 12, 18, 12, 6, 0; ...
References
- J.-P. Allouche and J. Shallit, Automatic sequences, Cambridge University Press, 2003, p. 29.
Crossrefs
Programs
-
Mathematica
T[n_, k_] := DivisorSum[GCD[k, n], MoebiusMu[#] Binomial[n/#, k/#] &]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 02 2015 *)
-
PARI
T(n,k)=sumdiv(gcd(k,n),d,moebius(d)*binomial(n/d,k/d)) \\ Benoit Cloitre, Jun 08 2004
Comments