A053782 Numbers k such that the sum of the first k composite numbers is prime.
5, 14, 17, 20, 35, 36, 37, 43, 47, 48, 53, 54, 63, 64, 68, 73, 74, 75, 86, 101, 106, 127, 142, 149, 154, 159, 208, 209, 214, 221, 231, 234, 250, 254, 258, 259, 272, 283, 302, 304, 329, 332, 346, 352, 374, 398, 417, 424, 439, 440, 445, 458, 471, 550, 551, 556
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[ n_Integer ] := Block[ {k = n + PrimePi[ n ] + 1}, While[ k - PrimePi[ k ] - 1 != n, k++ ]; k ]; s = 0; Do[ s = s + f[ n ]; If[ PrimeQ[ s ], Print[ n ] ], {n, 1, 1000} ] With[{cn=Accumulate[Select[Range[1000],CompositeQ]]},Position[cn,?PrimeQ]]// Flatten (* _Harvey P. Dale, Feb 09 2023 *)
-
PARI
lista(nn) = {my(s = 0, nb = 0); forcomposite(c=1, nn, s += c; nb++; if (isprime(s), print1(nb, ", ")););} \\ Michel Marcus, May 13 2018
-
Python
from sympy import isprime A053782_list, n, m, s = [], 1, 4, 4 while len(A053782_list) < 10000: if isprime(s): A053782_list.append(n) m += 1 if isprime(m): m += 1 n += 1 s += m # Chai Wah Wu, May 13 2018
Extensions
More terms from Robert G. Wilson v, Mar 22 2001