A053810 Numbers of the form p^e where both p and e are prime numbers.
4, 8, 9, 25, 27, 32, 49, 121, 125, 128, 169, 243, 289, 343, 361, 529, 841, 961, 1331, 1369, 1681, 1849, 2048, 2187, 2197, 2209, 2809, 3125, 3481, 3721, 4489, 4913, 5041, 5329, 6241, 6859, 6889, 7921, 8192, 9409, 10201, 10609, 11449, 11881, 12167
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..9965
Crossrefs
Programs
-
Haskell
a053810 n = a053810_list !! (n-1) a053810_list = filter ((== 1) . a010051 . a100995) $ tail a000961_list -- Reinhard Zumkeller, Jun 05 2013
-
Maple
h := proc(n) local P; P := NumberTheory:-PrimeFactors(n); nops(P) = 1 and isprime(padic:-ordp(n, P[1])) end: A053810List := upto -> seq(n, n = select(h, [seq(1..upto)])): # Peter Luschny, Apr 14 2025
-
Mathematica
pp={}; Do[if=FactorInteger[n]; If[Length[if]==1&&PrimeQ[if[[1, 1]]]&&PrimeQ[if[[1, 2]]], pp=Append[pp, n]], {n, 13000}]; pp Sort[ Flatten[ Table[ Prime[n]^Prime[i], {n, 1, PrimePi[ Sqrt[12800]]}, {i, 1, PrimePi[ Log[ Prime[n], 12800]]}]]]
-
PARI
is(n)=isprime(isprimepower(n)) \\ Charles R Greathouse IV, Mar 19 2013
-
Python
from sympy import primepi, integer_nthroot, primerange def A053810(n): def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x, p)[0]) for p in primerange(x.bit_length()))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 13 2024
-
SageMath
def isA(n): p = prime_divisors(n) return len(p) == 1 and is_prime(valuation(n, p[0])) print([n for n in srange(1, 12222) if isA(n)]) # Peter Luschny, Apr 14 2025
Formula
Sum_{n>=1} 1/a(n) = Sum_{p prime} P(p) = 0.6716752222..., where P is the prime zeta function. - Amiram Eldar, Nov 21 2020
Extensions
More terms from David Wasserman, Feb 17 2006
Name clarified by Peter Luschny, Apr 14 2025
Comments