A053811 Primes (in order) occurring in A053810.
2, 2, 3, 5, 3, 2, 7, 11, 5, 2, 13, 3, 17, 7, 19, 23, 29, 31, 11, 37, 41, 43, 2, 3, 13, 47, 53, 5, 59, 61, 67, 17, 71, 73, 79, 19, 83, 89, 2, 97, 101, 103, 107, 109, 23, 113, 127, 7, 131, 137, 139, 149, 151, 29, 157, 163, 167, 31, 173, 179, 181, 191, 193, 197, 199, 211, 223
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
PARI
LIM = prime(80)^2; v = vector(400); count = 0; forprime (p = 2, prime(80), x = 2; while (p^x <= LIM, count++; v[count] = p^x; x = nextprime(x + 1))); v = vecsort(vector(count, i, v[i])); A = vector(count); for (i = 1, count, f = factor(v[i]); A[i] = f[1, 1]); A \\ David Wasserman, Feb 17 2006
-
Python
from sympy import primepi, integer_nthroot, primerange, primefactors def A053811(n): def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x, p)[0]) for p in primerange(x.bit_length()))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return primefactors(kmax)[0] # Chai Wah Wu, Aug 13 2024
Formula
Extensions
More terms from David Wasserman, Feb 17 2006
Offset corrected by Amiram Eldar, Nov 21 2020