A053838 a(n) = (sum of digits of n written in base 3) modulo 3.
0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1, 2, 0, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1, 2, 0, 0, 1, 2, 1, 2, 0, 2, 0, 1, 2, 0, 1, 0, 1, 2, 1, 2, 0, 0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 0, 1, 2, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1, 2, 0, 0, 1, 2, 1, 2, 0
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- S. Brlek, Enumeration of factors in the Thue-Morse word, Discrete Applied Math. 24 (1989), 83-96.
- Arthur Dolgopolov, Equitable Sequencing and Allocation Under Uncertainty, Preprint, 2016.
- Glen Joyce C. Dulatre, Jamilah V. Alarcon, Vhenedict M. Florida, and Daisy Ann A. Disu, On Fractal Sequences, DMMMSU-CAS Science Monitor (2016-2017) Vol. 15 No. 2, 109-113.
- Michael Gilleland, Some Self-Similar Integer Sequences
- Michel Rigo, Relations on words, arXiv preprint arXiv:1602.03364 [cs.FL], 2016. See Example 17.
- Robert Walker, Self Similar Sloth Canon Number Sequences
- Index entries for sequences that are fixed points of mappings
Programs
-
Maple
A053838 := proc(n) add(d,d=convert(n,base,3)) ; modp(%,3) ; end proc: seq(A053838(n),n=0..100) ; # R. J. Mathar, Nov 04 2017
-
Mathematica
Nest[ Flatten[ # /. {0 -> {0, 1, 2}, 1 -> {1, 2, 0}, 2 -> {2, 0, 1}}] &, {0}, 7] (* Robert G. Wilson v, Mar 08 2005 *)
-
PARI
a(n) = vecsum(digits(n, 3)) % 3; \\ Michel Marcus, May 04 2016
-
Python
from sympy.ntheory import digits def A053838(n): return sum(digits(n,3)[1:])%3 # Chai Wah Wu, Feb 28 2025
Formula
a(n) = A010872(A053735(n)) =(n+a(floor[n/3])) mod 3. So one can construct sequence by starting with 0 and mapping 0->012, 1->120 and 2->201 (e.g. 0, 012, 012120201, 012120201120201012201012120, ...) and looking at n-th digit of a term with sufficient digits.
a(n) = A004128(n) mod 3. [Gary W. Adamson, Aug 24 2008]
Comments