A053839 a(n) = (sum of digits of n written in base 4) modulo 4.
0, 1, 2, 3, 1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 0, 1, 2, 3, 2, 3, 0, 1, 3, 0, 1, 2, 0, 1, 2, 3, 1, 2, 3, 0, 3, 0, 1, 2, 0, 1, 2, 3, 1, 2, 3, 0, 2, 3, 0, 1, 1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 0, 1, 2, 3, 2, 3, 0, 1, 3, 0, 1, 2, 0, 1, 2, 3, 1, 2, 3, 0, 3, 0, 1, 2, 0, 1, 2, 3, 1
Offset: 0
Examples
First three iterations of the morphism 0->0123, 1->1230, 2->2301, 3->3012: 0123 0123123023013012 0123123023013012123023013012012323013012012312303012012312302301
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Glen Joyce C. Dulatre, Jamilah V. Alarcon, Vhenedict M. Florida and Daisy Ann A. Disu, On Fractal Sequences, DMMMSU-CAS Science Monitor (2016-2017) Vol. 15 No. 2, 109-113.
- Robert Walker, Self Similar Sloth Canon Number Sequences
- Index entries for sequences that are fixed points of mappings
Crossrefs
Programs
-
Maple
seq(convert(convert(n,base,4),`+`) mod 4, n=0..100); # Robert Israel, May 18 2016
-
Mathematica
Mod[Total@ IntegerDigits[#, 4], 4] & /@ Range[0, 120] (* Michael De Vlieger, May 17 2016 *) s = Nest[Flatten[# /. {0 -> {0, 1, 2, 3}, 1 -> {1, 2, 3, 0}, 2 -> {2, 3, 0, 1}, 3 -> {3, 0, 1, 2}}] &, {0}, 9]; (* - Clark Kimberling, May 31 2017 *)
-
PARI
a(n) = vecsum(digits(n,4)) % 4; \\ Michel Marcus, May 16 2016
-
PARI
a(n) = sumdigits(n, 4) % 4; \\ Michel Marcus, Jul 04 2018
Formula
G.f. G(x) satisfies x^81*G(x) - (x^72+x^75+x^78+x^81)*G(x^4) + (x^48+x^60+x^63-x^64+x^72+x^75-x^76+x^78-x^79-x^88-x^91-x^94)*G(x^16) + (-1+x^16-x^48-x^60-x^63+2*x^64+x^76+x^79-x^80+x^112+x^124+x^127-x^128-x^140-x^143)*G(x^64) + (1-x^16-x^64+x^80-x^256+x^272+x^320-x^336)*G(x^256) = 0. - Robert Israel, May 18 2016
Comments