A053858 Squarefree even composite numbers with an odd number of prime factors.
30, 42, 66, 70, 78, 102, 110, 114, 130, 138, 154, 170, 174, 182, 186, 190, 222, 230, 238, 246, 258, 266, 282, 286, 290, 310, 318, 322, 354, 366, 370, 374, 402, 406, 410, 418, 426, 430, 434, 438, 442, 470, 474, 494, 498, 506, 518, 530, 534, 574, 582, 590
Offset: 1
Examples
a(3)=66 because 66 is even and its prime divisors are 2, 3 and 11, an odd number.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Maple
ts_m2_sod := proc(n); if (numtheory[mobius](n)=-1 and isprime(n)='false' and type(n,even)='true') then RETURN(n); fi end: am2sod := [seq(ts_m2_sod(i), i=1..2500)]: am2sod;
-
Mathematica
Select[Range[2,602,2],CompositeQ[#]&&SquareFreeQ[#]&&OddQ[PrimeOmega[#]]&] (* Harvey P. Dale, May 21 2024 *)
-
PARI
is(n,f=factor(n))=n%2==0 && #f[,2]>2 && vecmax(f[,2])==1 && (#f[,2])%2 \\ Charles R Greathouse IV, Aug 29 2017
Extensions
Name corrected by Charles R Greathouse IV, Aug 29 2017
Comments