A054065 Fractal sequence induced by tau: for k >= 1, let p(k) be the permutation of 1,2,...,k obtained by ordering the fractional parts {h*tau} for h=1,2,...,k; then juxtapose p(1),p(2),p(3),...
1, 2, 1, 2, 1, 3, 2, 4, 1, 3, 5, 2, 4, 1, 3, 5, 2, 4, 1, 6, 3, 5, 2, 7, 4, 1, 6, 3, 5, 2, 7, 4, 1, 6, 3, 8, 5, 2, 7, 4, 9, 1, 6, 3, 8, 5, 10, 2, 7, 4, 9, 1, 6, 3, 8, 5, 10, 2, 7, 4, 9, 1, 6, 11, 3, 8, 5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9
Offset: 1
Keywords
Examples
p(1)=(1); p(2)=(2,1); p(3)=(2,1,3); p(4)=(2,4,1,3). As a triangular array (see A194832), first nine rows: 1 2 1 2 1 3 2 4 1 3 5 2 4 1 3 5 2 4 1 6 3 5 2 7 4 1 6 3 5 2 7 4 1 6 3 8 5 2 7 4 9 1 6 3 8
Crossrefs
Programs
-
Mathematica
r = (1 + Sqrt[5])/2; t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A054065 *) TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] row[n_] := Position[f, n]; u = TableForm[Table[row[n], {n, 1, 20}]] g[n_, k_] := Part[row[n], k]; p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A054069 *) q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A054068 *) (* Clark Kimberling, Sep 03 2011 *) Flatten[Table[Ordering[Table[FractionalPart[GoldenRatio k], {k, n}]], {n, 10}]] (* Birkas Gyorgy, Jun 30 2012 *)
Extensions
Extended by Ray Chandler, Apr 18 2009