A054073 Fractal sequence induced by sqrt(2): for k >= 1 let p(k) be the permutation of 1,2,...,k obtained by ordering the fractional parts {h*sqrt(2)} for h=1,2,...,k; then juxtapose p(1),p(2),p(3),...
1, 1, 2, 3, 1, 2, 3, 1, 4, 2, 5, 3, 1, 4, 2, 5, 3, 1, 6, 4, 2, 5, 3, 1, 6, 4, 2, 7, 5, 3, 8, 1, 6, 4, 2, 7, 5, 3, 8, 1, 6, 4, 9, 2, 7, 5, 10, 3, 8, 1, 6, 4, 9, 2, 7, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8, 13, 1, 6, 11
Offset: 1
Keywords
Examples
p(1)=(1); p(2)=(1,2); p(3)=(3,1,2); p(4)=(3,1,4,2). When formatted as a triangle, the first 9 rows: 1 1 2 3 1 2 3 1 4 2 5 3 1 4 2 5 3 1 6 4 2 5 3 1 6 4 2 7 5 3 8 1 6 4 2 7 5 3 8 1 6 4 9 2 7
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
r = Sqrt[2]; t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A054073 *) TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] row[n_] := Position[f, n]; u = TableForm[Table[row[n], {n, 1, 20}]] g[n_, k_] := Part[row[n], k]; p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A054077 *) q[n_] := Position[p, n]; Flatten[ Table[q[n], {n, 1, 80}]] (* A054076 *) (* Clark Kimberling, Sep 03 2011 *)
Comments