cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054123 Right Fibonacci row-sum array T(n,k), n >= 0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 4, 2, 1, 1, 1, 5, 7, 4, 2, 1, 1, 1, 6, 11, 8, 4, 2, 1, 1, 1, 7, 16, 15, 8, 4, 2, 1, 1, 1, 8, 22, 26, 16, 8, 4, 2, 1, 1, 1, 9, 29, 42, 31, 16, 8, 4, 2, 1, 1, 1, 10, 37, 64, 57, 32, 16, 8, 4, 2, 1, 1, 1, 11, 46, 93, 99, 63, 32, 16, 8, 4, 2, 1, 1, 1, 12, 56
Offset: 0

Views

Author

Keywords

Comments

Variant of A052509 with an additional diagonal of 1's. - R. J. Mathar, Oct 12 2011
Starting with g(0) = {0}, generate g(n) for n > 0 inductively using these rules:
(1) if x is in g(n-1), then x + 1 is in g(n); and
(2) if x is in g(n-1) and x < 2, then x/2 is in g(n).
Then g(1) = {1/1}, g(2) = {1/2,2/1}, g(3) = {1/4,3/2,3/1}, etc. The denominators in g(n) are 2^0, 2^1, ..., 2^(n-1), and T(n,k) is the number of occurrences of 2^(n-1-k), for k = 0..n-1. - Clark Kimberling, Nov 09 2015
G.f.: Sum_{n>=0, 0<=k<=n} T(n,k) * x^n * y^k = (1-x^2*y) / ((1-x*y)*(1-x-x^2*y)). - Jianing Song, May 30 2022

Examples

			Rows:
1
1 1
1 1 1
1 2 1 1
1 3 2 1 1
1 4 4 2 1 1
1 5 7 4 2 1 1
		

Crossrefs

Reflection of array in A054124 about vertical central line.
Row sums: 1, 2, 3, 5, 8, 13, ... (Fibonacci numbers, A000045). Central numbers: 1, 1, 2, 4, 8, ... (binary powers, A000079). Cf. A011973.
Cf. A129713.

Programs

  • Haskell
    a054123 n k = a054123_tabl !! n !! k
    a054123_row n = a054123_tabl !! n
    a054123_tabl = [1] : [1, 1] : f [1] [1, 1] where
       f us vs = ws : f vs ws where
                 ws = zipWith (+) (0 : init us ++ [0, 0]) (vs ++ [1])
    -- Reinhard Zumkeller, May 26 2015
    
  • Mathematica
    Clear[t]; t[n_, k_] := t[n, k] = If[k == 0 || k == n || k == n-1, 1, t[n-1, k] + t[n-2, k-1]]; Table[t[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 01 2013 *)
  • PARI
    A052509(n,k) = sum(m=0, k, binomial(n-k, m));
    T(n,k) = if(k==n, 1, A052509(n-1,k)) \\ Jianing Song, May 30 2022

Formula

T(n, 0) = T(n, n) = 1 for n >= 0; T(n, n-1) = 1 for n >= 1; T(n, k) = T(n-1, k) + T(n-2, k-1) for k=1, 2, ..., n-2, n >= 3. [Corrected by Jianing Song, May 30 2022]
T(n, k) = T(n-1, k-1) + U(n-1, k) for k=1, 2, ..., floor(n/2), n >= 3, array U as in A011973.

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 05 2003