A054123 Right Fibonacci row-sum array T(n,k), n >= 0, 0<=k<=n.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 4, 2, 1, 1, 1, 5, 7, 4, 2, 1, 1, 1, 6, 11, 8, 4, 2, 1, 1, 1, 7, 16, 15, 8, 4, 2, 1, 1, 1, 8, 22, 26, 16, 8, 4, 2, 1, 1, 1, 9, 29, 42, 31, 16, 8, 4, 2, 1, 1, 1, 10, 37, 64, 57, 32, 16, 8, 4, 2, 1, 1, 1, 11, 46, 93, 99, 63, 32, 16, 8, 4, 2, 1, 1, 1, 12, 56
Offset: 0
Examples
Rows: 1 1 1 1 1 1 1 2 1 1 1 3 2 1 1 1 4 4 2 1 1 1 5 7 4 2 1 1
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- S. Sivasubramanian, Signed excedance enumeration in the hyperoctahedral group El. J. Combinat. 21 (1) (2014) #P2.10, Remark 16.
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Programs
-
Haskell
a054123 n k = a054123_tabl !! n !! k a054123_row n = a054123_tabl !! n a054123_tabl = [1] : [1, 1] : f [1] [1, 1] where f us vs = ws : f vs ws where ws = zipWith (+) (0 : init us ++ [0, 0]) (vs ++ [1]) -- Reinhard Zumkeller, May 26 2015
-
Mathematica
Clear[t]; t[n_, k_] := t[n, k] = If[k == 0 || k == n || k == n-1, 1, t[n-1, k] + t[n-2, k-1]]; Table[t[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 01 2013 *)
-
PARI
A052509(n,k) = sum(m=0, k, binomial(n-k, m)); T(n,k) = if(k==n, 1, A052509(n-1,k)) \\ Jianing Song, May 30 2022
Formula
T(n, 0) = T(n, n) = 1 for n >= 0; T(n, n-1) = 1 for n >= 1; T(n, k) = T(n-1, k) + T(n-2, k-1) for k=1, 2, ..., n-2, n >= 3. [Corrected by Jianing Song, May 30 2022]
T(n, k) = T(n-1, k-1) + U(n-1, k) for k=1, 2, ..., floor(n/2), n >= 3, array U as in A011973.
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 05 2003
Comments