A054200 Number of binary vectors (x_1,...x_n) satisfying Sum_{i=1..n} i*x_i = 3 (mod n+1) = size of Varshamov-Tenengolts code VT_3(n).
1, 1, 2, 2, 3, 6, 9, 16, 29, 51, 93, 172, 315, 585, 1094, 2048, 3855, 7285, 13797, 26214, 49938, 95325, 182361, 349536, 671088, 1290555, 2485532, 4793490, 9256395, 17895730, 34636833, 67108864, 130150586, 252645135, 490853403
Offset: 0
Keywords
Examples
From _Seiichi Manyama_, Sep 02 2023: (Start) 1 + 2 == 3 mod 6, 3 == 3 mod 6, 1 + 3 + 5 == 3 mod 6, 2 + 3 + 4 == 3 mod 6, 4 + 5 == 3 mod 6, 1 + 2 + 3 + 4 + 5 == 3 mod 6. So a(5) = 6. (End)
References
- N. J. A. Sloane, On single-deletion-correcting codes, in Codes and Designs (Columbus, OH, 2000), 273-291, Ohio State Univ. Math. Res. Inst. Publ., 10, de Gruyter, Berlin, 2002.
Links
- N. J. A. Sloane, On single-deletion-correcting codes
- N. J. A. Sloane, On single-deletion-correcting codes, 2002.
Crossrefs
Programs
-
PARI
a(n, k=3) = sumdiv(n+1, d, (d%2)*eulerphi(d)*moebius(d/gcd(d, k))/eulerphi(d/gcd(d, k))*2^((n+1)/d))/(2*(n+1)); \\ Seiichi Manyama, Sep 02 2023
Extensions
Offset changed to 0 by Seiichi Manyama, Sep 02 2023