cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054344 Number of ways of covering a 2n X 2n lattice with 2n^2 dominoes of which exactly 6 are horizontal (or vertical) dominoes.

Original entry on oeis.org

9, 1064, 21656, 197484, 1143366, 4927524, 17240292, 51631617, 137044523, 330284988, 735542444, 1533609350, 3024043008, 5684167992, 10249533240, 17821214019, 30006185613, 49097892704, 78305096016
Offset: 2

Views

Author

Yong Kong (ykong(AT)curagen.com), May 06 2000

Keywords

Examples

			a(3) = 1064 because we have 1064 ways to cover a 36 X 36 lattice with exactly 6 horizontal (or vertical) dominoes and exactly 12 vertical (or horizontal) dominoes.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^9-10*x^8+45*x^7-36*x^6+3096*x^5 +17256*x^4 +27724*x^3+11421*x^2+974*x+9)/(x-1)^10,{x,0,30}],x] (* Vincenzo Librandi, Jun 26 2012 *)

Formula

a(n) = (1/720)*n*(n+1)*(120*n^7-300*n^6-70*n^5+363*n^4+416*n^3-231*n^2-394*n-264).
G.f.: x^2*(x^9-10*x^8+45*x^7-36*x^6+3096*x^5+17256*x^4+27724*x^3+11421*x^2+974*x+9)/(x-1)^10. - Colin Barker, Jun 26 2012