A054352 Lengths of successive generations of the Kolakoski sequence A000002.
1, 2, 4, 7, 11, 18, 28, 43, 65, 99, 150, 226, 340, 511, 768, 1153, 1728, 2590, 3885, 5826, 8742, 13116, 19674, 29514, 44280, 66431, 99667, 149531, 224306, 336450, 504648, 756961, 1135450, 1703197, 2554846, 3832292, 5748474, 8622646, 12933971, 19400955, 29101203
Offset: 0
Links
- Michael S. Branicky, Table of n, a(n) for n = 0..61
Crossrefs
Programs
-
Mathematica
A2 = {1, 2, 2}; Do[If[Mod[n, 10^5] == 0, Print["n = ", n]]; m = 1 + Mod[n - 1, 2]; an = A2[[n]]; A2 = Join[A2, Table[m, {an}]], {n, 3, 10^6}]; A054353 = Accumulate[A2]; Clear[a]; a[0] = 1; a[n_] := a[n] = A054353[[a[n - 1]]] + 1; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Oct 30 2014, after Jean-Christophe Hervé *)
-
Python
def aupton(nn): alst, A054353, idx = [1], 0, 1 K = Kolakoski() # using Kolakoski() in A000002 for n in range(2, nn+1): target = alst[-1] while idx <= target: A054353 += next(K) idx += 1 alst.append(A054353 + 1) # a(n) = A054353(a(n-1))+1 return alst print(aupton(36)) # Michael S. Branicky, Jan 12 2021
Formula
a(0) = 1, and for n > 0, a(n) = A054353(a(n-1))+1. - Jean-Christophe Hervé, Oct 26 2014
Extensions
a(7)-a(32) from John W. Layman, Aug 20 2002
a(33) from Jean-François Alcover, Oct 30 2014
a(34) and beyond from Michael S. Branicky, Jan 12 2021
Comments