cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054389 Susceptibility series H_5 for 2-dimensional Ising model (divided by 2).

Original entry on oeis.org

1, 20, 140, 620, 2016, 5364, 12292, 25228, 47488, 83508, 138908, 220748, 337568, 499668, 719124, 1010092, 1388800, 1873876, 2486316, 3249836, 4190816, 5338676, 6725796, 8387916, 10364032, 12696820, 15432508, 18621324, 22317344, 26578964, 31468724, 37053804
Offset: 0

Views

Author

N. J. A. Sloane, May 09 2000

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([1], List([1..35], n-> n*(154*n^4 +1260*n^2 +941 -45*(-1)^n)/120)); # G. C. Greubel, Jul 31 2019
  • Magma
    [1] cat [n*(154*n^4 +1260*n^2 +941 -45*(-1)^n)/120: n in [1..35]]; // G. C. Greubel, Jul 31 2019
    
  • Mathematica
    LinearRecurrence[{4,-4,-4,10,-4,-4,4,-1}, {1,20,140,620,2016,5364,12292, 25228,47488},35] (* or *) CoefficientList[Series[(1 +16*x +64*x^2 + 144*x^3 +166*x^4 +144*x^5 +64*x^6 +16*x^7 +x^8)/((1-x)^6*(1+x)^2), {x,0, 35}], x] (* Indranil Ghosh, Feb 24 2017 *)
    Table[If[n==0, 1, n*(154*n^4 +1260*n^2 +941 -45*(-1)^n)/120], {n,0,35}] (* G. C. Greubel, Jul 31 2019 *)
  • PARI
    Vec((1 +16*x +64*x^2 +144*x^3 +166*x^4 +144*x^5 +64*x^6 +16*x^7 + x^8)/((1-x)^6*(1+x)^2) + O(x^35)) \\ Colin Barker, Dec 09 2016
    
  • Sage
    [1]+[n*(154*n^4 +1260*n^2 +941 -45*(-1)^n)/120 for n in (1..35)] # G. C. Greubel, Jul 31 2019
    

Formula

G.f.: (1 + 16*x + 64*x^2 + 144*x^3 + 166*x^4 + 144*x^5 + 64*x^6 + 16*x^7 + x^8) / ((1 - x)^6*(1 + x)^2).
From Colin Barker, Dec 09 2016: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) - 4*a(n-3) + 10*a(n-4) - 4*a(n-5) - 4*a(n-6) + 4*a(n-7) - a(n-8) for n>8.
a(n) = (77*n^5 + 630*n^3 + 448*n)/60 for n>0 and even.
a(n) = (77*n^5 + 630*n^3 + 493*n)/60 for n odd. (End)
From G. C. Greubel, Jul 31 2019: (Start)
a(n) = n*(154*n^4 + 1260*n^2 + 941 - 45*(-1)^n)/120, n>0, with a(0)=1.
E.g.f.: (x*(2355 + 6090*x + 5110*x^2 + 1540*x^3 + 154*x^4)*exp(x) + 120 + 45*x*exp(-x))/120. (End)