A054402 Numbers that are the sum of a positive square and a positive cube in more than one way.
17, 65, 89, 108, 129, 145, 225, 233, 252, 297, 316, 388, 449, 464, 505, 537, 548, 577, 593, 633, 730, 737, 745, 792, 793, 801, 873, 1025, 1088, 1090, 1116, 1289, 1304, 1305, 1367, 1412, 1441, 1452, 1529, 1585, 1601
Offset: 1
Examples
a(1)=17 since 17 = 3^2 + 2^3 = 4^2 + 1^3.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
lst={};Do[Do[AppendTo[lst,n^2+m^3],{n,5!}],{m,5!}];lst=Sort[lst]; lst2={};Do[If[lst[[n]]==lst[[n+1]],AppendTo[lst2,lst[[n]]]],{n,Length[lst]-1}];lst2; Take[Union[lst2],123] (* Vladimir Joseph Stephan Orlovsky, Jul 17 2009 *)
-
PARI
list(lim)=my(v=List(),u=List());for(n=1,sqrtint(lim\1-1), for(m=1, sqrtnint(lim\1-n^2,3), listput(v,n^2+m^3))); v=vecsort(v); for(i=2,#v, if(v[i]==v[i-1], listput(u,v[i]))); Set(u) \\ Charles R Greathouse IV, May 15 2015