A054415 Smallest prime factor of n!-1 (for n>2), a(2)=1.
1, 5, 23, 7, 719, 5039, 23, 11, 29, 13, 479001599, 1733, 87178291199, 17, 3041, 19, 59, 653, 124769, 23, 109, 51871, 625793187653, 149, 20431, 29, 239, 31, 265252859812191058636308479999999, 787, 263130836933693530167218012159999999, 8683317618811886495518194401279999999
Offset: 2
Keywords
Examples
a(3)=5 because 3!-1=5 which is prime; a(5)=7 because 5!-1=119=7*17 and 7<17
Links
- Chai Wah Wu, Table of n, a(n) for n = 2..153 (n = 2..135 from Amiram Eldar)
- P. Erdős and C. L. Stewart, On the greatest and least prime factors of n! + 1, J. London Math. Soc. (2) 13:3 (1976), pp. 513-519.
- M. Kraitchik, On the divisibility of factorials, Scripta Math., 14 (1948), 24-26 (but beware errors). [Annotated scanned copy]
- Hisanori Mishima, Factorizations of many number sequences: n! - 1 (n = 1 to 100); Primorials - 1.
- R. G. Wilson v, Explicit factorizations
Programs
-
Mathematica
Do[ Print[ FactorInteger[ n! - 1, FactorComplete -> True][ [1, 1] ] ], {n, 3, 32} ]
-
PARI
A054415(n)=if(n>2,factor(n!-1)[1,1],1) \\ M. F. Hasler, Oct 31 2012
Formula
Erdős & Stewart show that a(n) > n + (l-o(l))log n/log log n except when n+1 is prime, and that a(n) > n + e(n)sqrt(n) for almost all n where e(n) is any function with lim e(n) = 0. - Charles R Greathouse IV, Dec 05 2012
Extensions
More terms from Robert G. Wilson v, Aug 01 2000
More terms from Amiram Eldar, Oct 07 2019
Comments