cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A033312 a(n) = n! - 1.

Original entry on oeis.org

0, 0, 1, 5, 23, 119, 719, 5039, 40319, 362879, 3628799, 39916799, 479001599, 6227020799, 87178291199, 1307674367999, 20922789887999, 355687428095999, 6402373705727999, 121645100408831999, 2432902008176639999, 51090942171709439999, 1124000727777607679999
Offset: 0

Views

Author

N. J. A. Sloane. This sequence appeared in the 1973 "Handbook", but was then dropped from the database. Resubmitted by Eric W. Weisstein. Entry revised by N. J. A. Sloane, Jun 12 2012

Keywords

Comments

a(n) gives the index number in any table of permutations of the entry in which the last n + 1 items are reversed. - Eugene McDonnell (eemcd(AT)mac.com), Dec 03 2004
a(n), n >= 1, has the factorial representation [n - 1, n - 2, ..., 1, 0]. The (unique) factorial representation of a number m from {0, 1, ... n! - 1} is m = sum(m_j(n)*j!, j = 0 .. n - 1) with m_j(n) from {0, 1, .., j}, n>=1. This is encoded as [m_{n-1},m_{n-2},...,m+1,m_0] with m_0=0. This can be interpreted as (D. N.) Lehmer code for the lexicographic rank of permutations of the symmetric group S_n (see the W. Lang link under A136663). The Lehmer code [n - 1, n - 2, ..., 1, 0] stands for the permutation [n, n - 1, ..., 1] (the last in lexicographic order). - Wolfdieter Lang, May 21 2008
For n >= 3: a(n) = numbers m for which there is one iteration {floor (r / k)} for k = n, n - 1, n - 2, ... 2 with property r mod k = k - 1 starting at r = m. For n = 5: a(5) = 119; floor (119 / 5) = 23, 119 mod 5 = 4; floor (23 / 4) = 5, 23 mod 4 = 3; floor (5 / 3) = 1, 5 mod 3 = 2; floor (1 / 2) = 0; 1 mod 2 = 1. - Jaroslav Krizek, Jan 23 2010
For n = 4, define the sum of all possible products of 1, 2, 3, 4 to be 1 + 2 + 3 + 4 add 1*2 + 1*3 + 1*4 add 2*3 + 2*4 + 3*4 add 1*2*3 + 1*2*4 + 1*3*4 + 2*3*4 add 1*2*3*4. The sum of this is 119 = (4 + 1)! - 1. For n = 5 I get the sum 719 = (5 + 1)! - 1. The proof for the general case seems to follow by induction. - J. M. Bergot, Jan 10 2011

Examples

			G.f. = x^2 + 5*x^3 + 23*x^4 + 119*x^5 + 719*x^6 + 5039*x^7 + 40319*x^8 + ...
		

References

  • Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 181, p. 92.
  • Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 6, 1969, p. 3, 1993.
  • Problem 598, J. Rec. Math., 11 (1978), 68-69.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Cf. A000142, A001563 (first differences), A002582, A002982, A038507 (factorizations), A054415, A056110, A331373.
Row sums of A008291.

Programs

Formula

a(n) = Sum_{k = 1 .. n} (k-1)*(k-1)!.
a(n) = a(n - 1)*(n - 1) + a(n - 1) + n - 1, a(0) = 0. - Reinhard Zumkeller, Feb 03 2003
a(0) = a(1) = 0, a(n) = a(n - 1) * n + (n - 1) for n >= 2. - Jaroslav Krizek, Jan 23 2010
E.g.f.: 1/(1 - x) - exp(x). - Sergei N. Gladkovskii, Jun 29 2012
0 = 1 + a(n)*(+a(n+1) - a(n+2)) + a(n+1)*(+3 + a(n+1)) + a(n+2)*(-1) for n>=0. - Michael Somos, Feb 24 2017
Sum_{n>=2} 1/a(n) = A331373. - Amiram Eldar, Nov 11 2020

A002582 Largest prime factor of n! - 1.

Original entry on oeis.org

1, 5, 23, 17, 719, 5039, 1753, 2999, 125131, 7853, 479001599, 3593203, 87178291199, 1510259, 6880233439, 256443711677, 478749547, 78143369, 19499250680671, 4826713612027, 170006681813, 498390560021687969, 991459181683, 114776274341482621993
Offset: 2

Views

Author

Keywords

References

  • M. Kraitchik, On the divisibility of factorials, Scripta Math., 14 (1948), 24-26 (but beware errors).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [1] cat [Maximum(PrimeDivisors(Factorial(n)-1)): n in [3..30]]; // Vincenzo Librandi, Feb 14 2020
  • Mathematica
    Table[FactorInteger[n! - 1][[-1, 1]], {n, 2, 25}] (* Harvey P. Dale, Aug 29 2011 *)
  • PARI
    a(n)=if(n>2,my(f=factor(n!-1)[,1]);f[#f],1) \\ Charles R Greathouse IV, Dec 05 2012
    

Formula

Erdős & Stewart show that a(n) > n + (l-o(l))log n/log log n and lim sup a(n)/n > 2. - Charles R Greathouse IV, Dec 05 2012

Extensions

More terms from Robert G. Wilson v, Aug 01 2000

A104358 Smallest prime factor of A104357(n) = A104350(n) - 1.

Original entry on oeis.org

1, 5, 11, 59, 179, 1259, 11, 7559, 37799, 415799, 71, 227, 5981, 9067, 1135133999, 11717, 61, 79, 5499724229999, 97, 1543, 31, 29220034833989999, 8937119, 181, 401, 124759, 443851, 31, 2141, 3082663, 8191, 37230797, 1697, 1408101540804746673385499999, 10613, 73, 59, 107, 79, 617, 163, 173
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Comments

a(n) = A020639(A104357(n)).

Crossrefs

Extensions

Typo in data corrected by Gionata Neri, Oct 20 2017

A056110 Highest proper factor of n!-1, or a(n)=1 if n!-1 is not composite.

Original entry on oeis.org

1, 1, 1, 17, 1, 1, 1753, 32989, 125131, 3070523, 1, 3593203, 1, 76922021647, 6880233439, 18720390952421, 108514808571661, 186286524362683, 19499250680671, 2221345311813453913, 10311933282363373211, 498390560021687969, 991459181683, 104102080827724738147651, 19739193437746837432529
Offset: 2

Views

Author

Henry Bottomley, Jun 12 2000

Keywords

Crossrefs

Cf. A002582.

Programs

  • Mathematica
    pf[n_]:=Module[{c=n!-1},If[PrimeQ[c],1,c/FactorInteger[c][[1,1]]]]; Array[pf,30,2] (* Harvey P. Dale, Dec 13 2012 *)
  • PARI
    A056110(n)={n=factor(n!-1);if(norml2(n[,2])>1,factorback(n)/n[1,1],1)} \\ M. F. Hasler, Oct 31 2012

Formula

a(n) = A033312(n)/A054415(n)

Extensions

Edited and extended by M. F. Hasler, Oct 31 2012

A166864 Primes p that divide n! - 1 for some n > 1 other than p-2.

Original entry on oeis.org

17, 23, 29, 31, 53, 59, 61, 67, 71, 73, 83, 89, 97, 103, 107, 109, 137, 139, 149, 151, 167, 193, 199, 211, 223, 227, 233, 239, 251, 271, 277, 283, 307, 311, 331, 359, 379, 389, 397, 401, 419, 431, 439, 449, 457, 461, 463, 467, 479, 487, 499, 503, 521, 547, 557
Offset: 1

Views

Author

Michael B. Porter, Oct 22 2009

Keywords

Comments

Since n! - 1 = 0 for n=1 and n=2, the restriction n > 1 needed to be placed.
For n >= p, p is one of the factors of n!, so p cannot divide n! - 1.
For n = p-1, by Wilson's Theorem, (p-1)! = -1 (mod p), so p divides (p-1)! + 1, and cannot also divide (p-1)! - 1 unless p = 2.
For n = p-2, again by Wilson's Theorem, (p-1)! = (p-1)(p-2)! = (-1)(p-2)! = -1 (mod p), so (p-2)! = 1 (mod p) and p divides (p-2)! - 1. As a result, only 2 <= n <= p-3 needs to be searched.

Examples

			17 is included in the sequence since 17 divides 5! - 1 = 119.
19 is not included in the sequence since the only n for which 19 divides n! - 1 is n = 17.
		

Crossrefs

Programs

  • PARI
    isA166864(n) = {local(r);r=0;for(i=2,n-3,if((i!-1)%n==0,r=1));r}
Showing 1-5 of 5 results.