cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A104357 a(n) = A104350(n) - 1.

Original entry on oeis.org

0, 1, 5, 11, 59, 179, 1259, 2519, 7559, 37799, 415799, 1247399, 16216199, 113513399, 567566999, 1135133999, 19297277999, 57891833999, 1099944845999, 5499724229999, 38498069609999, 423478765709999, 9740011611329999
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    A104350[n_] := Product[FactorInteger[k][[-1, 1]], {k, 1, n}]; Table[A104350[n] - 1, {n, 1, 50}] (* G. C. Greubel, May 09 2017 *)
    FoldList[Times,Table[FactorInteger[n][[-1,1]],{n,30}]]-1 (* Harvey P. Dale, May 28 2018 *)

Formula

a(n) = (a(n-1) + 1) * A006530(n) - 1 for n>1, a(1) = 0;

A104359 Greatest prime factor of A104357(n) = A104350(n) - 1.

Original entry on oeis.org

1, 5, 11, 59, 179, 1259, 229, 7559, 37799, 415799, 17569, 71437, 18979, 62597, 1135133999, 1646947, 445771, 277021, 5499724229999, 2217247573, 721381, 46313123, 29220034833989999, 16347569521, 5464930609, 4939567, 319699160368361, 2605998587146349, 178974179, 15701603, 116318025830291273, 126202964557
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := FactorInteger[-1 + Product[FactorInteger[k][[-1, 1]], {k, 1, n}]][[-1, 1]]; Array[a, 50, 2] (* Amiram Eldar, Feb 12 2020 *)
  • PARI
    gpf(n) = if (n==1, 1, vecmax(factor(n)[,1])); \\ A006530
    a(n) = gpf(prod(i=2, n, gpf(i))-1); \\ Michel Marcus, Feb 21 2023

Formula

a(n) = A006530(A104357(n)).

A104360 Number of distinct prime factors of A104357(n) = A104350(n) - 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 1, 2, 3, 3, 1, 3, 3, 3, 1, 2, 4, 4, 2, 2, 5, 4, 2, 3, 2, 3, 1, 3, 4, 3, 5, 3, 4, 4, 5, 1, 3, 4, 2, 2, 2, 3, 1, 2, 3, 2, 3, 1, 4, 1, 3, 4, 6, 4, 4, 2, 6, 1, 5, 4, 4, 1, 2, 5, 7, 4, 5, 3, 4, 4, 5, 4, 5, 2, 4, 4, 5, 3, 3, 3, 2, 5, 2, 5, 4, 7, 2, 5, 3, 2, 6, 3, 4, 2, 3, 3, 3, 5, 4, 3, 5, 2
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    A104350[n_] := Product[FactorInteger[k][[-1, 1]], {k, 1, n}]; PrimeNu[Table[A104350[n] - 1, {n, 2,50}]] (* G. C. Greubel, May 10 2017 *)

Formula

a(n) = A001221(A104357(n)).

Extensions

a(51)-a(74) from Amiram Eldar, Feb 12 2020
More terms from Jinyuan Wang, Apr 02 2020
Terms a(90) onward from Max Alekseyev, Oct 03 2022

A104361 Number of divisors of A104357(n) = A104350(n) - 1.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 4, 4, 4, 2, 4, 8, 8, 2, 8, 8, 8, 2, 4, 16, 16, 4, 4, 32, 16, 4, 8, 4, 8, 2, 8, 16, 8, 32, 8, 16, 16, 32, 2, 8, 16, 4, 4, 4, 8, 2, 4, 8, 4, 8, 2, 16, 2, 8, 16, 64, 16, 16, 4, 64, 2, 32, 16, 16, 2, 4, 32, 128, 16, 32, 8, 16, 16, 32, 16, 32, 4, 16, 16, 32, 8, 8, 8, 4, 32, 4, 32, 16, 128, 4, 32, 8, 4
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, -1 + Product[FactorInteger[k][[-1, 1]], {k, 1, n}]]; Array[a, 50, 2] (* Amiram Eldar, Feb 12 2020 *)

Formula

a(n) = A000005(A104357(n)).

Extensions

a(51)-a(74) from Amiram Eldar, Feb 12 2020
Terms a(75) onward from Max Alekseyev, Oct 03 2022

A104362 Sum of divisors of A104357(n) = A104350(n) - 1.

Original entry on oeis.org

1, 6, 12, 60, 180, 1260, 2760, 7560, 37800, 415800, 1265040, 16287864, 113538360, 567638664, 1135134000, 19298936664, 58868650320, 1113894381120, 5499724230000, 39112247205360, 423754918508832, 10054207233388032, 29220034833990000, 146100190526456640, 1915895635570469280, 5712343370808883200, 39885667247556843120
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Maple
    A000142 := proc(n) RETURN(n!) ; end: A006530 := proc(n) local i, t1, t2, t3, t4; if n = 1 then RETURN(1) ; else t1 := numtheory[divisors](n); t2 := convert(t1, list); t3 := sort(t2); t4 := nops(t3); for i from 1 to t4 do if isprime(t3[t4+1-i]) then RETURN(t3[t4+1-i]); fi; od; RETURN(1); fi ; end: A104350 := proc(n) local k,resul ; resul := 1 ; for k from 1 to n do resul := resul*A006530(k) ; od ; RETURN(resul) ; end: A104357 := proc(n) A104350(n)-1 ; end: A104362 := proc(n) numtheory[sigma](A104357(n)) ; end: for n from 2 to 30 do printf("%d,",A104362(n)) ; od ; # R. J. Mathar, Oct 30 2006
  • Mathematica
    a[n_] := DivisorSigma[1, Product[FactorInteger[k][[-1, 1]], {k, 1, n}]-1]; Table[a[n], {n, 2, 23}] (* Jean-François Alcover, Feb 10 2018 *)

Formula

a(n) = A000203(A104357(n));
a(p) = A104350(p) for primes p.

Extensions

Corrected and extended by R. J. Mathar, Oct 30 2006

A104363 Euler's totient of A104357(n) = A104350(n) - 1.

Original entry on oeis.org

1, 4, 10, 58, 178, 1258, 2280, 7558, 37798, 415798, 1229760, 16144536, 113488440, 567495336, 1135133998, 19295619336, 56915913600, 1085995965600, 5499724229998, 37888326510336, 423202615117920, 9425816095466520, 29220034833989998, 146100157813443360, 1882777893068160000, 5683471349506454400, 39885027849235856880
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := EulerPhi[-1 + Product[FactorInteger[k][[-1, 1]], {k, 1, n}]]; Array[a, 50, 2] (* Amiram Eldar, Feb 12 2020 *)

Formula

a(n) = A000010(A104357(n)).

A104366 Smallest prime factor of A104365(n) = A104350(n) + 1.

Original entry on oeis.org

2, 3, 7, 13, 61, 181, 13, 2521, 7561, 103, 415801, 1247401, 167, 191, 211, 127, 23, 40357, 1099944846001, 349, 41, 251, 37, 2243, 146100174169950001, 103, 53, 1217, 1156675078903494150001, 47, 2939, 251, 857, 41, 547, 13127, 47, 48563, 281, 1336484560722851, 479, 373, 2179, 577670972464621571, 17491, 1399, 97, 22893547
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Comments

a(n) = A020639(A104365(n)).

Crossrefs

Programs

  • PARI
    gpf(n) = if (n==1, 1, vecmax(factor(n)[,1])); \\ A006530
    spf(n) = if (n==1, 1, vecmin(factor(n)[,1])); \\ A020639
    a(n) = spf(prod(i=2, n, gpf(i))+1); \\ Michel Marcus, Feb 21 2023

Extensions

Corrected by D. S. McNeil, Dec 10 2010
Showing 1-7 of 7 results.