cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A104359 Greatest prime factor of A104357(n) = A104350(n) - 1.

Original entry on oeis.org

1, 5, 11, 59, 179, 1259, 229, 7559, 37799, 415799, 17569, 71437, 18979, 62597, 1135133999, 1646947, 445771, 277021, 5499724229999, 2217247573, 721381, 46313123, 29220034833989999, 16347569521, 5464930609, 4939567, 319699160368361, 2605998587146349, 178974179, 15701603, 116318025830291273, 126202964557
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := FactorInteger[-1 + Product[FactorInteger[k][[-1, 1]], {k, 1, n}]][[-1, 1]]; Array[a, 50, 2] (* Amiram Eldar, Feb 12 2020 *)
  • PARI
    gpf(n) = if (n==1, 1, vecmax(factor(n)[,1])); \\ A006530
    a(n) = gpf(prod(i=2, n, gpf(i))-1); \\ Michel Marcus, Feb 21 2023

Formula

a(n) = A006530(A104357(n)).

A104358 Smallest prime factor of A104357(n) = A104350(n) - 1.

Original entry on oeis.org

1, 5, 11, 59, 179, 1259, 11, 7559, 37799, 415799, 71, 227, 5981, 9067, 1135133999, 11717, 61, 79, 5499724229999, 97, 1543, 31, 29220034833989999, 8937119, 181, 401, 124759, 443851, 31, 2141, 3082663, 8191, 37230797, 1697, 1408101540804746673385499999, 10613, 73, 59, 107, 79, 617, 163, 173
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Comments

a(n) = A020639(A104357(n)).

Crossrefs

Extensions

Typo in data corrected by Gionata Neri, Oct 20 2017

A104360 Number of distinct prime factors of A104357(n) = A104350(n) - 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 1, 2, 3, 3, 1, 3, 3, 3, 1, 2, 4, 4, 2, 2, 5, 4, 2, 3, 2, 3, 1, 3, 4, 3, 5, 3, 4, 4, 5, 1, 3, 4, 2, 2, 2, 3, 1, 2, 3, 2, 3, 1, 4, 1, 3, 4, 6, 4, 4, 2, 6, 1, 5, 4, 4, 1, 2, 5, 7, 4, 5, 3, 4, 4, 5, 4, 5, 2, 4, 4, 5, 3, 3, 3, 2, 5, 2, 5, 4, 7, 2, 5, 3, 2, 6, 3, 4, 2, 3, 3, 3, 5, 4, 3, 5, 2
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    A104350[n_] := Product[FactorInteger[k][[-1, 1]], {k, 1, n}]; PrimeNu[Table[A104350[n] - 1, {n, 2,50}]] (* G. C. Greubel, May 10 2017 *)

Formula

a(n) = A001221(A104357(n)).

Extensions

a(51)-a(74) from Amiram Eldar, Feb 12 2020
More terms from Jinyuan Wang, Apr 02 2020
Terms a(90) onward from Max Alekseyev, Oct 03 2022

A104361 Number of divisors of A104357(n) = A104350(n) - 1.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 4, 4, 4, 2, 4, 8, 8, 2, 8, 8, 8, 2, 4, 16, 16, 4, 4, 32, 16, 4, 8, 4, 8, 2, 8, 16, 8, 32, 8, 16, 16, 32, 2, 8, 16, 4, 4, 4, 8, 2, 4, 8, 4, 8, 2, 16, 2, 8, 16, 64, 16, 16, 4, 64, 2, 32, 16, 16, 2, 4, 32, 128, 16, 32, 8, 16, 16, 32, 16, 32, 4, 16, 16, 32, 8, 8, 8, 4, 32, 4, 32, 16, 128, 4, 32, 8, 4
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, -1 + Product[FactorInteger[k][[-1, 1]], {k, 1, n}]]; Array[a, 50, 2] (* Amiram Eldar, Feb 12 2020 *)

Formula

a(n) = A000005(A104357(n)).

Extensions

a(51)-a(74) from Amiram Eldar, Feb 12 2020
Terms a(75) onward from Max Alekseyev, Oct 03 2022

A104362 Sum of divisors of A104357(n) = A104350(n) - 1.

Original entry on oeis.org

1, 6, 12, 60, 180, 1260, 2760, 7560, 37800, 415800, 1265040, 16287864, 113538360, 567638664, 1135134000, 19298936664, 58868650320, 1113894381120, 5499724230000, 39112247205360, 423754918508832, 10054207233388032, 29220034833990000, 146100190526456640, 1915895635570469280, 5712343370808883200, 39885667247556843120
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Maple
    A000142 := proc(n) RETURN(n!) ; end: A006530 := proc(n) local i, t1, t2, t3, t4; if n = 1 then RETURN(1) ; else t1 := numtheory[divisors](n); t2 := convert(t1, list); t3 := sort(t2); t4 := nops(t3); for i from 1 to t4 do if isprime(t3[t4+1-i]) then RETURN(t3[t4+1-i]); fi; od; RETURN(1); fi ; end: A104350 := proc(n) local k,resul ; resul := 1 ; for k from 1 to n do resul := resul*A006530(k) ; od ; RETURN(resul) ; end: A104357 := proc(n) A104350(n)-1 ; end: A104362 := proc(n) numtheory[sigma](A104357(n)) ; end: for n from 2 to 30 do printf("%d,",A104362(n)) ; od ; # R. J. Mathar, Oct 30 2006
  • Mathematica
    a[n_] := DivisorSigma[1, Product[FactorInteger[k][[-1, 1]], {k, 1, n}]-1]; Table[a[n], {n, 2, 23}] (* Jean-François Alcover, Feb 10 2018 *)

Formula

a(n) = A000203(A104357(n));
a(p) = A104350(p) for primes p.

Extensions

Corrected and extended by R. J. Mathar, Oct 30 2006

A104363 Euler's totient of A104357(n) = A104350(n) - 1.

Original entry on oeis.org

1, 4, 10, 58, 178, 1258, 2280, 7558, 37798, 415798, 1229760, 16144536, 113488440, 567495336, 1135133998, 19295619336, 56915913600, 1085995965600, 5499724229998, 37888326510336, 423202615117920, 9425816095466520, 29220034833989998, 146100157813443360, 1882777893068160000, 5683471349506454400, 39885027849235856880
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := EulerPhi[-1 + Product[FactorInteger[k][[-1, 1]], {k, 1, n}]]; Array[a, 50, 2] (* Amiram Eldar, Feb 12 2020 *)

Formula

a(n) = A000010(A104357(n)).

A104350 Partial products of largest prime factors of numbers <= n.

Original entry on oeis.org

1, 2, 6, 12, 60, 180, 1260, 2520, 7560, 37800, 415800, 1247400, 16216200, 113513400, 567567000, 1135134000, 19297278000, 57891834000, 1099944846000, 5499724230000, 38498069610000, 423478765710000, 9740011611330000
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Comments

Partial Products of A006530: a(n) = Product_{k=1..n} A006530(k).
a(n) = a(n-1)*A006530(n) for n>1, a(1) = 1;
A020639(a(n)) = A040000(n-1), A006530(a(n)) = A007917(n) for n>1.
A001221(a(n)) = A000720(n), A001222(a(n)) = A001477(n-1).
A007947(a(n)) = A034386(n).
a(n) = A000142(n) / A076928(n). [Corrected by Franklin T. Adams-Watters, Oct 30 2006]
In decimal representation: A104351(n) = number of digits of a(n), A104355(n) = number of trailing zeros of a(n).
A104357(n) = a(n) - 1, A104365(n) = a(n) + 1.

References

  • Gérald Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Publ. Inst. Elie Cartan, Vol. 13, Nancy, 1990.

Crossrefs

Programs

  • Haskell
    a104350 n = a104350_list !! (n-1)
    a104350_list = scanl1 (*) a006530_list
    -- Reinhard Zumkeller, Apr 10 2014
    
  • Mathematica
    A104350[n_] := Product[FactorInteger[k][[-1, 1]], {k, 1, n}]; Table[A104350[n], {n, 30}] (* G. C. Greubel, May 09 2017 *)
    FoldList[Times,Table[FactorInteger[n][[-1,1]],{n,30}]] (* Harvey P. Dale, May 25 2023 *)
  • PARI
    gpf(n)=my(f=factor(n)[,1]); f[#f]
    a(n)=prod(i=2,n,gpf(i)) \\ Charles R Greathouse IV, Apr 29 2015
    
  • PARI
    first(n)=my(v=vector(n,i,1)); forfactored(k=2,n, v[k[1]]=v[k[1]-1]*vecmax(k[2][,1])); v \\ Charles R Greathouse IV, May 10 2017

Formula

log(a(n)) = c * n * log(n) + c * (1-gamma) * n + O(n * exp(-log(n)^(3/8-eps))), where c is the Golomb-Dickman constant (A084945) and gamma is Euler's constant (A001620) (Tenenbaum, 1990). - Amiram Eldar, May 21 2021

Extensions

More terms from David Wasserman, Apr 24 2008

A104365 a(n) = A104350(n) + 1.

Original entry on oeis.org

2, 3, 7, 13, 61, 181, 1261, 2521, 7561, 37801, 415801, 1247401, 16216201, 113513401, 567567001, 1135134001, 19297278001, 57891834001, 1099944846001, 5499724230001, 38498069610001, 423478765710001, 9740011611330001
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[Times, Array[FactorInteger[#][[-1, 1]] &, 30]] + 1 (* Amiram Eldar, Apr 08 2024 *)

Formula

a(n) = (a(n-1) - 1) * A006530(n) + 1 for n>1, a(1) = 0;

A104364 Primes of the form A104350(k) - 1.

Original entry on oeis.org

5, 11, 59, 179, 1259, 7559, 37799, 415799, 1135133999, 5499724229999, 29220034833989999, 1408101540804746673385499999, 43673268652925265723884051023987499999
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Intersection of A104357 and A000040.

Programs

  • Mathematica
    Select[FoldList[Times, Array[FactorInteger[#][[-1, 1]] &, 100]] - 1, PrimeQ] (* Amiram Eldar, Apr 08 2024 *)
  • PARI
    gpf(n) = {my(p = factor(n)[, 1]); if(n == 1, 1, p[#p]);}
    lista(nmax) = {my(r = 1); for(k = 1, nmax, r * = gpf(k); if(isprime(r-1), print1(r-1, ", ")));} \\ Amiram Eldar, Apr 08 2024

A104373 Numbers m such that (A104350(m)-1, A104350(m)+1) is a twin prime pair.

Original entry on oeis.org

3, 4, 5, 6, 9, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Comments

No more terms < 2000. - David Wasserman, Apr 24 2008
a(7) > 5000, if it exists. - Amiram Eldar, Apr 08 2024

Examples

			a(5)=9: A104350(9) = 2*3*2*5*3*7*2*3 = 7560, A000040(959) = 7559 = 7560-1, A000040(960) = 7561 = 7560+1.
		

Crossrefs

Programs

Showing 1-10 of 10 results.