cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A104366 Smallest prime factor of A104365(n) = A104350(n) + 1.

Original entry on oeis.org

2, 3, 7, 13, 61, 181, 13, 2521, 7561, 103, 415801, 1247401, 167, 191, 211, 127, 23, 40357, 1099944846001, 349, 41, 251, 37, 2243, 146100174169950001, 103, 53, 1217, 1156675078903494150001, 47, 2939, 251, 857, 41, 547, 13127, 47, 48563, 281, 1336484560722851, 479, 373, 2179, 577670972464621571, 17491, 1399, 97, 22893547
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Comments

a(n) = A020639(A104365(n)).

Crossrefs

Programs

  • PARI
    gpf(n) = if (n==1, 1, vecmax(factor(n)[,1])); \\ A006530
    spf(n) = if (n==1, 1, vecmin(factor(n)[,1])); \\ A020639
    a(n) = spf(prod(i=2, n, gpf(i))+1); \\ Michel Marcus, Feb 21 2023

Extensions

Corrected by D. S. McNeil, Dec 10 2010

A104367 Greatest prime factor of A104365(n) = A104350(n) + 1.

Original entry on oeis.org

2, 3, 7, 13, 61, 181, 97, 2521, 7561, 367, 415801, 1247401, 97103, 594311, 2689891, 269, 415147, 1434493, 1099944846001, 13421, 938977307561, 1687166397251, 6121943187511, 13027211250107, 146100174169950001, 1389833, 10603380543703, 2129284819, 1156675078903494150001, 132597517693, 47172675889, 11159737, 20350106034371
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := FactorInteger[1 + Product[FactorInteger[k][[-1, 1]], {k, 1, n}]][[-1, 1]]; Array[a, 76] (* Amiram Eldar, Feb 12 2020 *)

Formula

a(n) = A006530(A104365(n)).

Extensions

Corrected by T. D. Noe, Nov 15 2006

A104368 Number of distinct prime factors of A104365(n) = A104350(n) + 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 4, 4, 2, 1, 4, 2, 2, 3, 2, 1, 4, 3, 3, 1, 3, 4, 5, 4, 5, 4, 3, 3, 4, 7, 2, 5, 4, 4, 2, 4, 3, 4, 2, 3, 7, 4, 2, 4, 2, 3, 2, 4, 3, 4, 5, 3, 4, 4, 2, 1, 2, 4, 6, 4, 3, 3, 4, 4, 6, 6, 6, 5, 3, 6, 4, 5, 3, 3, 5, 3, 4, 3, 4, 7, 6, 4, 3, 4, 2, 3, 3, 2, 2, 5, 2, 3, 3, 6, 4, 3, 3, 2, 3, 2, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    A104350[n_] := Product[FactorInteger[k][[-1, 1]], {k, 1, n}]; PrimeNu[
    Table[A104350[n] + 1, {n, 2, 50}]] (* G. C. Greubel, May 10 2017 *)

Formula

a(n) = A001221(A104365(n)).

Extensions

a(51)-a(76) from Amiram Eldar, Feb 12 2020
a(77)-a(81) from Jinyuan Wang, Apr 02 2020
Terms a(82) onward from Max Alekseyev, Oct 03 2022

A104369 Number of divisors of A104365(n) = A104350(n) + 1.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 4, 4, 16, 16, 4, 2, 16, 4, 4, 8, 4, 2, 16, 8, 8, 2, 8, 16, 32, 16, 32, 16, 8, 8, 16, 128, 4, 32, 16, 16, 4, 16, 8, 16, 4, 8, 128, 16, 4, 16, 4, 8, 4, 16, 8, 16, 32, 8, 16, 16, 4, 2, 4, 16, 64, 16, 8, 8, 16, 16, 64, 64, 64, 32, 8, 64, 16, 32, 8, 8, 32, 8, 16, 8, 16, 128, 64, 16, 8, 16, 4, 8
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, 1 + Product[FactorInteger[k][[-1, 1]], {k, 1, n}]]; Array[a, 76] (* Amiram Eldar, Feb 12 2020 *)

Formula

a(n) = A000005(A104365(n)).

Extensions

a(51)-a(76) from Amiram Eldar, Feb 12 2020
Terms a(77) onward from Max Alekseyev, Oct 03 2022

A104370 Sum of divisors of A104365(n) = A104350(n) + 1.

Original entry on oeis.org

3, 4, 8, 14, 62, 182, 1372, 2522, 7562, 38272, 415802, 1247402, 16313472, 114107904, 570257104, 1161216000, 21043021824, 57893308852, 1099944846002, 5530978026000, 39437046917604, 425165932107504, 10235889009520064, 29233062045242352, 146100174169950002, 1917846796927501440, 5805987050510562240, 39918123659008838880
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 1 + Product[FactorInteger[k][[-1, 1]], {k, 1, n}]]; Array[a, 30] (* Amiram Eldar, Feb 12 2020 *)

Formula

a(n) = A000203(A104365(n)).

A104371 Euler's totient of A104365(n) = A104350(n) + 1.

Original entry on oeis.org

1, 2, 6, 12, 60, 180, 1152, 2520, 7560, 37332, 415800, 1247400, 16118932, 112918900, 564876900, 1109481408, 17645365584, 57890359152, 1099944846000, 5468570553600, 37559092302400, 421791599312500, 9256378099515120, 29207007622737652, 146100174169950000, 1880759745476519040, 5589847741506645552, 39852571442073216768
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := EulerPhi[1 + Product[FactorInteger[k][[-1, 1]], {k, 1, n}]]; Array[a, 76] (* Amiram Eldar, Feb 12 2020 *)

Formula

a(n) = A000010(A104365(n));
a(p) = A104350(p) for primes p.

A104350 Partial products of largest prime factors of numbers <= n.

Original entry on oeis.org

1, 2, 6, 12, 60, 180, 1260, 2520, 7560, 37800, 415800, 1247400, 16216200, 113513400, 567567000, 1135134000, 19297278000, 57891834000, 1099944846000, 5499724230000, 38498069610000, 423478765710000, 9740011611330000
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Comments

Partial Products of A006530: a(n) = Product_{k=1..n} A006530(k).
a(n) = a(n-1)*A006530(n) for n>1, a(1) = 1;
A020639(a(n)) = A040000(n-1), A006530(a(n)) = A007917(n) for n>1.
A001221(a(n)) = A000720(n), A001222(a(n)) = A001477(n-1).
A007947(a(n)) = A034386(n).
a(n) = A000142(n) / A076928(n). [Corrected by Franklin T. Adams-Watters, Oct 30 2006]
In decimal representation: A104351(n) = number of digits of a(n), A104355(n) = number of trailing zeros of a(n).
A104357(n) = a(n) - 1, A104365(n) = a(n) + 1.

References

  • Gérald Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Publ. Inst. Elie Cartan, Vol. 13, Nancy, 1990.

Crossrefs

Programs

  • Haskell
    a104350 n = a104350_list !! (n-1)
    a104350_list = scanl1 (*) a006530_list
    -- Reinhard Zumkeller, Apr 10 2014
    
  • Mathematica
    A104350[n_] := Product[FactorInteger[k][[-1, 1]], {k, 1, n}]; Table[A104350[n], {n, 30}] (* G. C. Greubel, May 09 2017 *)
    FoldList[Times,Table[FactorInteger[n][[-1,1]],{n,30}]] (* Harvey P. Dale, May 25 2023 *)
  • PARI
    gpf(n)=my(f=factor(n)[,1]); f[#f]
    a(n)=prod(i=2,n,gpf(i)) \\ Charles R Greathouse IV, Apr 29 2015
    
  • PARI
    first(n)=my(v=vector(n,i,1)); forfactored(k=2,n, v[k[1]]=v[k[1]-1]*vecmax(k[2][,1])); v \\ Charles R Greathouse IV, May 10 2017

Formula

log(a(n)) = c * n * log(n) + c * (1-gamma) * n + O(n * exp(-log(n)^(3/8-eps))), where c is the Golomb-Dickman constant (A084945) and gamma is Euler's constant (A001620) (Tenenbaum, 1990). - Amiram Eldar, May 21 2021

Extensions

More terms from David Wasserman, Apr 24 2008

A104357 a(n) = A104350(n) - 1.

Original entry on oeis.org

0, 1, 5, 11, 59, 179, 1259, 2519, 7559, 37799, 415799, 1247399, 16216199, 113513399, 567566999, 1135133999, 19297277999, 57891833999, 1099944845999, 5499724229999, 38498069609999, 423478765709999, 9740011611329999
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    A104350[n_] := Product[FactorInteger[k][[-1, 1]], {k, 1, n}]; Table[A104350[n] - 1, {n, 1, 50}] (* G. C. Greubel, May 09 2017 *)
    FoldList[Times,Table[FactorInteger[n][[-1,1]],{n,30}]]-1 (* Harvey P. Dale, May 28 2018 *)

Formula

a(n) = (a(n-1) + 1) * A006530(n) - 1 for n>1, a(1) = 0;

A104372 Primes of the form A104350(k) + 1.

Original entry on oeis.org

2, 3, 7, 13, 61, 181, 2521, 7561, 415801, 1247401, 1099944846001, 146100174169950001, 1156675078903494150001, 750321420485151941966263672363958662088980270355720625000001
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Intersection of A104365 and A000040.

Programs

  • Mathematica
    Select[FoldList[Times, Array[FactorInteger[#][[-1, 1]] &, 100]] + 1, PrimeQ] (* Amiram Eldar, Apr 08 2024 *)
  • PARI
    gpf(n) = {my(p = factor(n)[, 1]); if(n == 1, 1, p[#p]);}
    lista(nmax) = {my(r = 1); for(k = 1, nmax, r * = gpf(k); if(isprime(r+1), print1(r+1, ", ")));} \\ Amiram Eldar, Apr 08 2024

Extensions

a(14) from Amiram Eldar, Apr 09 2024

A104373 Numbers m such that (A104350(m)-1, A104350(m)+1) is a twin prime pair.

Original entry on oeis.org

3, 4, 5, 6, 9, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Comments

No more terms < 2000. - David Wasserman, Apr 24 2008
a(7) > 5000, if it exists. - Amiram Eldar, Apr 08 2024

Examples

			a(5)=9: A104350(9) = 2*3*2*5*3*7*2*3 = 7560, A000040(959) = 7559 = 7560-1, A000040(960) = 7561 = 7560+1.
		

Crossrefs

Programs

Showing 1-10 of 10 results.