cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A104365 a(n) = A104350(n) + 1.

Original entry on oeis.org

2, 3, 7, 13, 61, 181, 1261, 2521, 7561, 37801, 415801, 1247401, 16216201, 113513401, 567567001, 1135134001, 19297278001, 57891834001, 1099944846001, 5499724230001, 38498069610001, 423478765710001, 9740011611330001
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[Times, Array[FactorInteger[#][[-1, 1]] &, 30]] + 1 (* Amiram Eldar, Apr 08 2024 *)

Formula

a(n) = (a(n-1) - 1) * A006530(n) + 1 for n>1, a(1) = 0;

A104359 Greatest prime factor of A104357(n) = A104350(n) - 1.

Original entry on oeis.org

1, 5, 11, 59, 179, 1259, 229, 7559, 37799, 415799, 17569, 71437, 18979, 62597, 1135133999, 1646947, 445771, 277021, 5499724229999, 2217247573, 721381, 46313123, 29220034833989999, 16347569521, 5464930609, 4939567, 319699160368361, 2605998587146349, 178974179, 15701603, 116318025830291273, 126202964557
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := FactorInteger[-1 + Product[FactorInteger[k][[-1, 1]], {k, 1, n}]][[-1, 1]]; Array[a, 50, 2] (* Amiram Eldar, Feb 12 2020 *)
  • PARI
    gpf(n) = if (n==1, 1, vecmax(factor(n)[,1])); \\ A006530
    a(n) = gpf(prod(i=2, n, gpf(i))-1); \\ Michel Marcus, Feb 21 2023

Formula

a(n) = A006530(A104357(n)).

A104366 Smallest prime factor of A104365(n) = A104350(n) + 1.

Original entry on oeis.org

2, 3, 7, 13, 61, 181, 13, 2521, 7561, 103, 415801, 1247401, 167, 191, 211, 127, 23, 40357, 1099944846001, 349, 41, 251, 37, 2243, 146100174169950001, 103, 53, 1217, 1156675078903494150001, 47, 2939, 251, 857, 41, 547, 13127, 47, 48563, 281, 1336484560722851, 479, 373, 2179, 577670972464621571, 17491, 1399, 97, 22893547
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Comments

a(n) = A020639(A104365(n)).

Crossrefs

Programs

  • PARI
    gpf(n) = if (n==1, 1, vecmax(factor(n)[,1])); \\ A006530
    spf(n) = if (n==1, 1, vecmin(factor(n)[,1])); \\ A020639
    a(n) = spf(prod(i=2, n, gpf(i))+1); \\ Michel Marcus, Feb 21 2023

Extensions

Corrected by D. S. McNeil, Dec 10 2010

A104368 Number of distinct prime factors of A104365(n) = A104350(n) + 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 4, 4, 2, 1, 4, 2, 2, 3, 2, 1, 4, 3, 3, 1, 3, 4, 5, 4, 5, 4, 3, 3, 4, 7, 2, 5, 4, 4, 2, 4, 3, 4, 2, 3, 7, 4, 2, 4, 2, 3, 2, 4, 3, 4, 5, 3, 4, 4, 2, 1, 2, 4, 6, 4, 3, 3, 4, 4, 6, 6, 6, 5, 3, 6, 4, 5, 3, 3, 5, 3, 4, 3, 4, 7, 6, 4, 3, 4, 2, 3, 3, 2, 2, 5, 2, 3, 3, 6, 4, 3, 3, 2, 3, 2, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    A104350[n_] := Product[FactorInteger[k][[-1, 1]], {k, 1, n}]; PrimeNu[
    Table[A104350[n] + 1, {n, 2, 50}]] (* G. C. Greubel, May 10 2017 *)

Formula

a(n) = A001221(A104365(n)).

Extensions

a(51)-a(76) from Amiram Eldar, Feb 12 2020
a(77)-a(81) from Jinyuan Wang, Apr 02 2020
Terms a(82) onward from Max Alekseyev, Oct 03 2022

A104369 Number of divisors of A104365(n) = A104350(n) + 1.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 4, 4, 16, 16, 4, 2, 16, 4, 4, 8, 4, 2, 16, 8, 8, 2, 8, 16, 32, 16, 32, 16, 8, 8, 16, 128, 4, 32, 16, 16, 4, 16, 8, 16, 4, 8, 128, 16, 4, 16, 4, 8, 4, 16, 8, 16, 32, 8, 16, 16, 4, 2, 4, 16, 64, 16, 8, 8, 16, 16, 64, 64, 64, 32, 8, 64, 16, 32, 8, 8, 32, 8, 16, 8, 16, 128, 64, 16, 8, 16, 4, 8
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, 1 + Product[FactorInteger[k][[-1, 1]], {k, 1, n}]]; Array[a, 76] (* Amiram Eldar, Feb 12 2020 *)

Formula

a(n) = A000005(A104365(n)).

Extensions

a(51)-a(76) from Amiram Eldar, Feb 12 2020
Terms a(77) onward from Max Alekseyev, Oct 03 2022

A104370 Sum of divisors of A104365(n) = A104350(n) + 1.

Original entry on oeis.org

3, 4, 8, 14, 62, 182, 1372, 2522, 7562, 38272, 415802, 1247402, 16313472, 114107904, 570257104, 1161216000, 21043021824, 57893308852, 1099944846002, 5530978026000, 39437046917604, 425165932107504, 10235889009520064, 29233062045242352, 146100174169950002, 1917846796927501440, 5805987050510562240, 39918123659008838880
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 1 + Product[FactorInteger[k][[-1, 1]], {k, 1, n}]]; Array[a, 30] (* Amiram Eldar, Feb 12 2020 *)

Formula

a(n) = A000203(A104365(n)).

A104371 Euler's totient of A104365(n) = A104350(n) + 1.

Original entry on oeis.org

1, 2, 6, 12, 60, 180, 1152, 2520, 7560, 37332, 415800, 1247400, 16118932, 112918900, 564876900, 1109481408, 17645365584, 57890359152, 1099944846000, 5468570553600, 37559092302400, 421791599312500, 9256378099515120, 29207007622737652, 146100174169950000, 1880759745476519040, 5589847741506645552, 39852571442073216768
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := EulerPhi[1 + Product[FactorInteger[k][[-1, 1]], {k, 1, n}]]; Array[a, 76] (* Amiram Eldar, Feb 12 2020 *)

Formula

a(n) = A000010(A104365(n));
a(p) = A104350(p) for primes p.
Showing 1-7 of 7 results.