A054431 Array read by antidiagonals: T(x, y) tells whether (x, y) are coprime (1) or not (0).
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1
Offset: 1
Examples
Rows start: 1, 1, 1, 1, 1, 1, ...; 1, 0, 1, 0, 1, 0, ...; 1, 1, 0, 1, 1, 0, ...; 1, 0, 1, 0, 1, 0, ...; 1, 1, 1, 1, 0, 1, ...; 1, 0, 0, 0, 1, 0, ...;
Crossrefs
Programs
-
Maple
reduced_residue_set_0_1_array := n -> one_or_zero(igcd(((n-((trinv(n)*(trinv(n)-1))/2))+1), ((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1) )); one_or_zero := n -> `if`((1 = n),(1),(0)); # trinv given at A054425 A054431_row := n -> seq(abs(numtheory[jacobi](n-k+1,k)),k=1..n); for n from 1 to 14 do A054431_row(n) od; # Peter Luschny, Aug 05 2012
-
Mathematica
t[n_, k_] := Boole[CoprimeQ[n, k]]; Table[t[n-k+1, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 21 2012 *)
-
Sage
def A054431_row(n): return [abs(kronecker_symbol(n-k+1,k)) for k in (1..n)] for n in (1..14): print(A054431_row(n)) # Peter Luschny, Aug 05 2012
Formula
T(n, k) = T(n, k-n) + T(n-k, k) starting with T(n, k)=0 if n or k are nonpositive and T(1, 1)=1. T(n, k) = A054521(n, k) if n>=k, = A054521(k, n) if n<=k. Antidiagonal sums are phi(n) = A000010(n). - Henry Bottomley, May 14 2002
As a triangular array for n>=1, 1<=k<=n, T(n,k) = |K(n-k+1|k)| where K(i|j) is the Kronecker symbol. - Peter Luschny, Aug 05 2012
Dirichlet g.f.: Sum_{n>=1} Sum_{k>=1} [gcd(n,k)=1]/n^s/k^c = zeta(s)*zeta(c)/zeta(s + c). - Mats Granvik, May 19 2021
Comments