A054434 Number of possible positions in an n X n X n Rubik's cube reachable from the starting position.
1, 88179840, 43252003274489856000, 177628724197557644876978255387965784064000000000, 282870942277741856536180333107150328293127731985672134721536000000000000000
Offset: 1
Examples
From _Andrey Zabolotskiy_, Jun 24 2016 [following Munafo]: (Start) a(4) = 8! * 3^7 * 24! * 24! / 4!^6 is constituted by: 8! permutation of corners × (12*2)! permutation of edges × (6*4)! permutation of centers × 1 (combination of permutations must be even, but we can achieve what appears to be an odd permutation of the other pieces in the cube by "hiding" a transposition within the indistinguishable pieces of one color) × 3^8 orientations of corners / 3 total orientation of corners must be zero × 1 (orientations of edges and centers are determined by their position) / 4!^6 the four center pieces of each color are indistinguishable (End)
Links
- Francocube forum, [4x4x4] Les maths du 4x4x4
- Georges Helm, Rubik's Cube
- M. E. Larsen, Rubik's Revenge: The Group Theoretical Solution, Amer. Math. Monthly 92, 381 (1985), DOI:10.2307/2322445.
- Christopher Mowla, Math 3900
- Robert Munafo, Rubik's Cube and other Cuboid Puzzles
- Philippe Picart, Le Rubik's cube
- E. Rubik, Rubik Cube Site
- Jaap Scherphuis, Puzzle Pages
- Xavier Servantie, All about Rubik's cube
- Author?, Rubik's Cube
- Index entries for sequences related to Rubik cube
Programs
-
Mathematica
f[1]=1; f[2]=24*7!3^6; f[3]=8!3^7 12!2^10; f[n_]:=f[n-2]*24^6*(24!/24^6)^(n-2); Table[f[n], {n, 1, 10}] (* Herbert Kociemba, Dec 08 2016 *)
Formula
From Andrey Zabolotskiy, Jun 24 2016: (Start)
a(n) = A075152(n)*24 if n is even,
a(n) = A075152(n) if n is odd.
a(1)=1; a(2)=24*7!*3^6; a(3)=8!*3^7*12!*2^10; a(n)=a(n-2)*24^6*(24!/24^6)^(n-2). - Herbert Kociemba, Dec 08 2016
Extensions
a(4) and a(5) corrected and definition clarified by Andrey Zabolotskiy, Jun 24 2016
Comments