A075152
Number of possible permutations of a Rubik cube of size n X n X n.
Original entry on oeis.org
1, 3674160, 43252003274489856000, 7401196841564901869874093974498574336000000000, 282870942277741856536180333107150328293127731985672134721536000000000000000
Offset: 1
Warren Power, Sep 05 2002
- Dan Hoey, posting to Cube Lovers List, Jun 24, 1987.
- Rowley, Chris, The group of the Hungarian magic cube, in Algebraic structures and applications (Nedlands, 1980), pp. 33-43, Lecture Notes in Pure and Appl. Math., 74, Dekker, New York, 1982.
- Robert Munafo, Table of n, a(n) for n = 1..27 (first 10 terms from Robert G. Wilson v)
- Answers.com, Rubik's Cube.
- Isaiah Bowers, How To Solve A Rubik's Cube.
- Richard Carr, The Number of Possible Positions of an N x N x N Rubik Cube
- Cube Lovers, Discussions on the mathematics of the cube
- Cube Lovers Archive, Mailing List
- Cube20.org, God's Number is 20
- Christophe Goudey, Information
- David Joyner, Adventures in Group Theory: Rubik's Cube, Merlin's Machine, and Other Mathematical Toys, 2008. See Example 4.5.1. p. 73.
- Naren Ramesh, Generalising the configurations of an N X N X N Rubik's Cube, Parabola (2023) Vol. 59, Issue 3. See p. 22.
- Jaap Scherphuis, Puzzle Pages
- Eric Weisstein's World of Mathematics, Rubik's Cube
- WikiHow, How to Solve a Rubik's Cube with the Layer Method
- Wikipedia, Rubik's Cube
- Wikipedia, Professor's Cube
-
f := proc(n) local A,B,C,D,E,F,G; if n mod 2 = 1 then A := (n-1)/2; F := 0; B := 1; C := 1; D := 0; E := (n+1)*(n-3)/4; G := (n-1)*(n-3)/4; else A := n/2; F := 1; B := 1; C := 0; D := 0; E := n*(n-2)/4; G := (n-2)^2/4; fi; (2^A*((8!/2)*3^7)^B*((12!/2)*2^11)^C*((4^6)/2)^D*(24!/2)^E)/(24^F*((24^6)/2)^G); end;
-
f[n_] := Block[{a, b, c, d, e, f, g}, If[OddQ@ n, a = (n - 1)/2; b = c = 1; d = f = 0; e = (n + 1) (n - 3)/4; g = (n - 1) (n - 3)/4, a = n/2; b = f = 1; c = d = 0; e = n (n - 2)/4; g = (n - 2)^2/4]; Ceiling[(2^a*((8!/2)*3^7)^b*((12!/2)*2^11)^c*((4^6)/2)^d*(24!/2)^e)/(24^f*((24^6)/2)^g)]]; Array[f, 10] (* Robert G. Wilson v, May 23 2009 *)
f[1]=1; f[2]=7!3^6; f[3]=8!3^7 12!2^10;f[n_]:=f[n-2]*24^6*(24!/24^6)^(n-2);Table[f[n],{n,1,10}] (* Herbert Kociemba, Dec 08 2016 *)
f[1]=1;f[n_]:=7!3^6(6*24!!)^(s=Mod[n,2])24!^(r=(n-s)/2-1)(24!/4!^6)^(r(r+s)); Array[f,5] (* Herbert Kociemba, Jul 03 2022 *)
-
A075152(n) := block( if n = 1 then return (1), [a:1,b:1,c:1,d:1,e:1,f:1,g:1], if mod(n, 2) = 1 then ( a : (n-1)/2, f : 0, b : 1, c : 1, d : 0, e : (n+1)*(n-3)/4, g : (n-1)*(n-3)/4 ) else ( a : n/2, f : 1, b : 1, c : 0, d : 0, e : n*(n-2)/4, g : (n-2)^2/4 ), return ( (2^a * ((factorial(8)/2)*3^7)^b * ((factorial(12)/2)*2^11)^c * ((4^6)/2)^d * (factorial(24)/2)^e) / (24^f * ((24^6)/2)^g) ) )$ for i:1 thru 27 step 1 do ( sprint(i, A075152(i)), newline() )$ /* Robert Munafo, Nov 12 2014 */
-
A075152(n)=ceil(3674160*(11771943321600)^(n%2)*620448401733239439360000^floor((n-2)/2)*(3246670537110000)^floor(((n-2)/2)^2)) \\ Davis Smith, Mar 20 2020
A007458
Order of group of n X n X n Rubik cube.
Original entry on oeis.org
1, 24, 1058158080, 173008013097959424000
Offset: 1
- J. H. Conway, personal communication.
- Rowley, Chris, The group of the Hungarian magic cube, in Algebraic structures and applications (Nedlands, 1980), pp. 33-43, Lecture Notes in Pure and Appl. Math., 74, Dekker, New York, 1982.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A074914
Order of group of n X n X n Rubik cube, under assumptions not-s, m, i.
Original entry on oeis.org
1, 3674160, 43252003274489856000, 31180187340244394380451751732775816935095098996162560000000000, 55852096265861522186773299669081144244056150466856272776458775940912440274885530047848906752000000000000000000
Offset: 1
- Dan Hoey, posting to Cube Lovers List, Jun 24, 1987.
- C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 452.
- Rowley, Chris, The group of the Hungarian magic cube, in Algebraic structures and applications (Nedlands, 1980), pp. 33-43, Lecture Notes in Pure and Appl. Math., 74, Dekker, New York, 1982.
-
f := proc(n) local A,B,C,D,E,F,G; if n mod 2 = 1 then A := (n-1)/2; B := (n-1)/2; C := (n-1)/2; D := 0; E := (n+4)*(n-1)*(n-3)/24; F := 0; G := 0; else A := n/2; B := n/2; C := 0; D := 0; E := n*(n^2-4)/24; F := 1; G := 0; fi; (2^A*((8!/2)*3^7)^B*((12!/2)*2^11)^C*((4^6)/2)^D*(24!/2)^E)/(24^F*((24^6)/2)^G); end;
A080656
Order of group of n X n X n Rubik cube, under assumptions not-s, m, not-i.
Original entry on oeis.org
1, 3674160, 43252003274489856000, 707195371192426622240452051915172831683411968000000000, 2582636272886959379162819698174683585918088940054237132144778804568925405184000000000000000
Offset: 1
- Dan Hoey, posting to Cube Lovers List, Jun 24, 1987.
- Rowley, Chris, The group of the Hungarian magic cube, in Algebraic structures and applications (Nedlands, 1980), pp. 33-43, Lecture Notes in Pure and Appl. Math., 74, Dekker, New York, 1982.
-
f := proc(n) local A,B,C,D,E,F,G; if n mod 2 = 1 then A := (n-1)/2; B := 1; C := 1; D := 0; E := (n+1)*(n-3)/4; F := 0; G := 0; else A := n/2; B := 1; C := 0; D := 0; E := n*(n-2)/4; F := 1; G := 0; fi; (2^A*((8!/2)*3^7)^B*((12!/2)*2^11)^C*((4^6)/2)^D*(24!/2)^E)/(24^F*((24^6)/2)^G); end;
-
f[1]=1;f[2]=7!3^6;f[3]=8!3^7 12!2^10;f[n_]:=f[n-2]*24!(24!/2)^(n-3); Array[f,5] (* Herbert Kociemba, Dec 08 2016 *)
f[1]=1;f[n_]:=7!3^6(6*24!!)^(s=Mod[n,2])24!^(r=(n-s)/2-1)(24!/2)^(r(r+s)); Array[f,5] (* Herbert Kociemba, Jul 03 2022 *)
A080662
Order of group of n X n X n Rubik cube, under assumptions s, not-m, i.
Original entry on oeis.org
1, 3674160, 88580102706155225088000, 326318176648849198250599213408124182588293120000000000, 25658098810418462614156980952771358874191154069919957663814291417013979423841452032000000000000000000
Offset: 1
- Dan Hoey, posting to Cube Lovers List, Jun 24, 1987.
- Rowley, Chris, The group of the Hungarian magic cube, in Algebraic structures and applications (Nedlands, 1980), pp. 33-43, Lecture Notes in Pure and Appl. Math., 74, Dekker, New York, 1982.
-
f := proc(n) local A,B,C,D,E,F,G; if n mod 2 = 1 then A := (n-1)/2; F := 0; B := (n-1)/2; C := (n-1)/2; D := (n-1)/2; E := (n+4)*(n-1)*(n-3)/24; G := (n^2-1)*(n-3)/24; else A := n/2; F := 1; B := n/2; C := 0; D := 0; E := n*(n^2-4)/24; G := n*(n-1)*(n-2)/24; fi; (2^A*((8!/2)*3^7)^B*((12!/2)*2^11)^C*((4^6)/2)^D*(24!/2)^E)/(24^F*((24^6)/2)^G); end;
A080661
Order of group of n X n X n Rubik cube, under assumptions s, not-m, not-i.
Original entry on oeis.org
1, 3674160, 88580102706155225088000, 7401196841564901869874093974498574336000000000, 579319689784815322186097322203443872344325595106656531909705728000000000000000
Offset: 1
- Dan Hoey, posting to Cube Lovers List, Jun 24, 1987.
- Rowley, Chris, The group of the Hungarian magic cube, in Algebraic structures and applications (Nedlands, 1980), pp. 33-43, Lecture Notes in Pure and Appl. Math., 74, Dekker, New York, 1982.
-
f := proc(n) local A,B,C,D,E,F,G; if n mod 2 = 1 then A := (n-1)/2; F := 0; B := 1; C := 1; D := 1; E := (n+1)*(n-3)/4; G := (n-1)*(n-3)/4; else A := n/2; F := 1; B := 1; C := 0; D := 0; E := n*(n-2)/4; G := (n-2)^2/4; fi; (2^A*((8!/2)*3^7)^B*((12!/2)*2^11)^C*((4^6)/2)^D*(24!/2)^E)/(24^F*((24^6)/2)^G); end;
A257401
God's number for a Rubik's cube of size n X n X n (using the half turn metric).
Original entry on oeis.org
- Jerry Bryan, God's Algorithm for the 2x2x2 Pocket Cube.
- Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Anna Lubiw, and Andrew Winslow, Algorithms for Solving Rubik's Cubes, in: C. Demetrescu and M. M. Halldórsson (eds.), Algorithms - ESA 2011, 19th Annual European Symposium, Saarbrücken, Germany, September 5-9, 2011, Proceedings, Lecture Notes in Computer Science, Vol. 6942, Springer, Berlin, Heidelberg, 2011, pp. 689-700; arXiv preprint, arXiv:1106.5736 [cs.DS], 2011.
- Joseph L. Flatley, Rubik's Cube solved in twenty moves, 35 years of CPU time.
- Tomas Rokicki, Herbert Kociemba, Morley Davidson, and John Dethridge, The Diameter Of The Rubik's Cube Group Is Twenty, SIAM J. of Discrete Math, Vol. 27, No. 2 (2013), pp. 1082-1105.
- Jaap Scherphuis, Mini Cube, the 2×2×2 Rubik's Cube.
- Speedsolving.com, Rubik's Cube Fact sheet.
- Wikipedia, Optimal solutions for Rubik's Cube.
A060010
Number of 2n-move sequences on the 3 X 3 X 3 Rubik's Cube (only quarter-twists count as moves) that leave the cube unchanged.
Original entry on oeis.org
1, 12, 312, 10464, 398208, 16323072, 702465024
Offset: 0
There are 12 closed walks of length 2: F*F^(-1), F^(-1)*F, R*R^(-1), R^(-1)*R, ..., D*D^(-1), D^(-1)*D.
A061713
Number of closed walks of length n on a 3 X 3 X 3 Rubik's Cube.
Original entry on oeis.org
1, 0, 18, 36, 720, 3600, 42624, 312480, 3148032, 27073152, 261446688, 2407791936, 23168736768, 220481838720, 2137258661472
Offset: 0
There are 18 closed walks of length 2: F*F^(-1), F^2*F^2, F^(-1)*F, R*R^(-1), R^(-1)*R, R^2*R^2 . . ., D*D^(-1), D^(-1)*D, D^2*D^2.
A080658
Order of group of n X n X n Rubik cube, under assumptions not-s, not-m, i.
Original entry on oeis.org
1, 3674160, 43252003274489856000, 326318176648849198250599213408124182588293120000000000, 6117367460827460912265057790940131872699535863380422035173008779767508369408000000000000000000
Offset: 1
- Dan Hoey, posting to Cube Lovers List, Jun 24, 1987.
- Rowley, Chris, The group of the Hungarian magic cube, in Algebraic structures and applications (Nedlands, 1980), pp. 33-43, Lecture Notes in Pure and Appl. Math., 74, Dekker, New York, 1982.
-
f := proc(n) local A,B,C,D,E,F,G; if n mod 2 = 1 then A := (n-1)/2; F := 0; B := (n-1)/2; C := (n-1)/2; D := 0; E := (n+4)*(n-1)*(n-3)/24; G := (n^2-1)*(n-3)/24; else A := n/2; F := 1; B := n/2; C := 0; D := 0; E := n*(n^2-4)/24; G := n*(n-1)*(n-2)/24; fi; (2^A*((8!/2)*3^7)^B*((12!/2)*2^11)^C*((4^6)/2)^D*(24!/2)^E)/(24^F*((24^6)/2)^G); end;
Showing 1-10 of 14 results.
Comments