Ben Whitmore has authored 16 sequences. Here are the ten most recent ones:
A376950
Smallest prime p such that x^n + x + 1 splits modulo p.
Original entry on oeis.org
3, 31, 193, 211, 4339, 41143, 20347, 8196919, 152305817, 1741273, 8262307441, 853465946651, 52120172761
Offset: 2
a(4) = 193 because x^4 + x + 1 has an irreducible factor of degree > 1 modulo all primes less than 193, but splits as (x + 135)(x + 145)(x + 148)(x + 151) modulo 193.
-
f:= proc(n) local P,F,p,x;
P:= x^n+x+1;
p:= 1;
do
p:= nextprime(p);
F:= map(degree,(Factors(P) mod p)[2][..,1],x);
if max(F) = 1 then return p fi
od
end proc:
map(f, [$2..8]); # Robert Israel, Oct 10 2024
-
a[n_] := Module[{i},
For[i = 1, True, i++,
If[Total[Last /@ Rest[FactorList[x^n + x + 1, Modulus -> Prime[i]]]] == n,
Return[Prime[i]];
]
]
];
a /@ Range[2, 8]
A377496
Smallest prime p such that x^n - x - 1 splits modulo p.
Original entry on oeis.org
5, 23, 83, 1973, 1151, 20959, 40609, 1627853, 57323489, 1616436271, 6814548563, 217642750067
Offset: 2
a(4) = 83 because x^4 - x - 1 has an irreducible factor of degree > 1 modulo all primes less than 83, but splits as (x + 3)(x + 7)(x + 14)(x + 59) modulo 83.
-
a[n_] := Module[{i},
For[i = 1, True, i++,
If[Total[Last /@ Rest[FactorList[x^n - x - 1, Modulus -> Prime[i]]]] == n,
Return[Prime[i]];
]
]
];
a /@ Range[2, 8]
A371558
Consider primitive pairs of integers (b, c) with b < 0 such that x^5 + b*x + c = 0 is irreducible and solvable by radicals: sequence gives values of c.
Original entry on oeis.org
12, 64, 832, 576, 4060, 86428, 8800, 76000, 17500, 61500, 22243, 303810, 60333, 36672, 3045440, 42588, 114244, 48552, 1251081, 486387, 579734, 209409, 19615484, 281216, 10826816, 406848, 378211392, 43922220, 1051200, 1354560, 9939228, 66545721, 773916, 9585212
Offset: 1
a(1) = 12 because A371557(1) = -5, and x^5 - 5*x + 12 is irreducible and solvable by radicals, and (-5, 12) is a primitive pair.
-
pairs = Join @@ Table[
Select[{b, Abs[#1 - b] #2/5} & @@@
Sort[SolveValues[x^2 - (6b + 5y^4)x + 25b^2 == 0 && y > 0, {x, y}, Integers]],
Max[Last /@ FactorInteger[GCD @@ #]] < 4 &&
AllTrue[#, IntegerQ] &&
IrreduciblePolynomialQ[x^5 + #1x + #2 & @@ #] &
],
{b, -1, -1000, -1}
];
pairs[[All, 2]]
A371557
Consider primitive pairs of integers (b, c) with b < 0 such that x^5 + b*x + c = 0 is irreducible and solvable by radicals: sequence gives values of b.
Original entry on oeis.org
-5, -40, -40, -72, -1189, -1189, -1900, -1900, -2625, -2625, -4350, -4350, -7280, -7368, -7368, -7553, -8788, -8840, -8840, -26010, -26010, -29580, -29580, -37180, -37180, -38120, -38120, -43061, -49640, -49640, -63713, -72668, -73185, -73185, -91845, -91845
Offset: 1
-40 is in the sequence twice because x^5 - 40*x + 64 and x^5 - 40*x + 832 are both irreducible and solvable by radicals, and (-40, 64) and (-40, 832) are both primitive pairs.
-
pairs = Join @@ Table[
Select[{b, Abs[#1 - b] #2/5} & @@@
Sort[SolveValues[x^2 - (6b + 5y^4)x + 25b^2 == 0 && y > 0, {x, y}, Integers]],
Max[Last /@ FactorInteger[GCD @@ #]] < 4 &&
AllTrue[#, IntegerQ] &&
IrreduciblePolynomialQ[x^5 + #1x + #2 & @@ #] &
],
{b, -1, -1000, -1}
];
pairs[[All, 1]]
A371554
Consider primitive pairs of integers (b, c) with b > 0 such that x^5 + b*x + c = 0 is irreducible and solvable by radicals: sequence gives values of c.
Original entry on oeis.org
44, 12, 44, 32, 64, 1344, 576, 1344, 832, 275, 4170, 2375, 3750, 4060, 128700, 13243, 1510620, 24000, 3348800, 8788, 467961, 51072, 133440, 474214, 61500, 128700, 85683, 514098, 509197, 199927, 24000, 3720000, 21376538, 210990, 486343, 114244, 12681084
Offset: 1
a(1) = 44 because A371553(1) = 11, and x^5 + 11*x + 44 is irreducible and solvable by radicals, and (11, 44) is a primitive pair.
-
pairs = Join @@ Table[
Select[{m, Abs[#1 - b] #2/5} & @@@
Sort[SolveValues[x^2 - (6b + 5y^4)x + 25b^2 == 0 && y > 0, {x, y},
Integers]],
Max[Last /@ FactorInteger[GCD @@ #]] < 4 &&
AllTrue[#, IntegerQ] &&
IrreduciblePolynomialQ[x^5 + #1x + #2 & @@ #] &
],
{b, 1, 1000}
];
pairs[[All, 2]]
A371553
Consider primitive pairs of integers (b, c) with b > 0 such that x^5 + b*x + c = 0 is irreducible and solvable by radicals: sequence gives values of b.
Original entry on oeis.org
11, 15, 15, 20, 120, 120, 280, 280, 312, 330, 330, 750, 750, 4095, 4095, 5700, 5700, 7800, 7800, 10140, 10140, 10564, 10564, 11102, 11275, 11275, 21970, 21970, 27248, 30758, 31000, 31000, 31146, 31350, 31350, 32955, 32955, 35490, 35490, 38360, 38360, 41236
Offset: 1
15 is in the sequence twice because x^5 + 15*x + 12 and x^5 + 15*x + 44 are both irreducible and solvable by radicals, and (15, 12) and (15, 44) are both primitive pairs.
176 is not in the sequence because there is no integer c for which (176, c) is primitive and x^5 + 176*x + c is irreducible and solvable by radicals. x^5 + 176*x + 1408 is irreducible and solvable by radicals, but (176, 1408) is not primitive because it is equivalent to (11, 44).
x^5 + (10/13)*x - 3/13 is solvable by radicals, and (10/13, -3/13) ~ (21970, 85683) which is primitive, so 21970 is in the sequence.
-
pairs = Join @@ Table[
Select[{b, Abs[#1 - b] #2/5} & @@@
Sort[SolveValues[x^2 - (6b + 5y^4)x + 25b^2 == 0 && y > 0, {x, y}, Integers]],
Max[Last /@ FactorInteger[GCD @@ #]] < 4 &&
AllTrue[#, IntegerQ] &&
IrreduciblePolynomialQ[x^5 + #1x + #2 & @@ #] &
],
{b, 1, 1000}
];
pairs[[All, 1]]
A355560
Number of configurations of the 8 X 2 variant of the sliding block 15-puzzle that require a minimum of n moves to be reached, starting with the empty square in one of the corners.
Original entry on oeis.org
1, 2, 3, 6, 11, 20, 37, 68, 125, 227, 394, 672, 1151, 1983, 3373, 5703, 9508, 15640, 25293, 40732, 65032, 103390, 162830, 255543, 397013, 613104, 938477, 1431068, 2162964, 3255845, 4860428, 7223861, 10649867, 15628073, 22747718, 32963838, 47397514, 67825949, 96317070
Offset: 0
Starting from the solved configuration
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15
the unique configuration requiring 140 moves is
8 6 5 4 3 10 1
15 7 14 13 12 11 2 9
A349647
Nonnegative integers which produce a record minimum MD5 hash.
Original entry on oeis.org
0, 1, 4, 6, 27, 134, 138, 168, 363, 1970, 5329, 738639, 752491, 848775, 1803305, 2420500, 20412333, 207691249, 220455692, 517921150, 521602912, 1149023650, 1289986143, 5963709738, 6262635619, 23831964366, 79255202271, 1970864394858, 2255739204027
Offset: 1
a(5) = 27 because MD5("27") = 02e74f10e0327ad868d138f2b4fdd6f0_16 = 3859480213286334249913589638377625328, which is smaller than all previous values MD5("0"), ..., MD5("26").
-
recordsBy[l_, P_] :=
Module[{max = -Infinity, x, i, recs = {}},
For[i = 1, i <= Length[l], i++,
x = P[l[[i]]];
If[x > max,
max = x;
AppendTo[recs, l[[i]]];
]
];
recs
];
recordsBy[Range[1000], -Hash[ToString[#], "MD5"] &]
-
from hashlib import md5
def afind(limit):
record = "~"
for k in range(limit+1):
hash = md5(str(k).encode('utf-8')).hexdigest()
if hash < record:
print(k, end=", ")
record = hash
afind(10**7) # Michael S. Branicky, Nov 24 2021
A349646
Nonnegative integers which produce a record maximum MD5 hash.
Original entry on oeis.org
0, 3, 44, 65, 83, 373, 575, 1126, 12673, 25670, 30268, 30525, 40691, 48240964, 63327632, 298506737, 369490840, 1113434519, 1647703600, 4958115803, 64657664035, 86155378906, 184280298746, 400812644253, 411723964986, 714853066875, 1627993432495, 2607864795784
Offset: 1
a(5) = 83 because MD5("83") = fe9fc289c3ff0af142b6d3bead98a923_16 = 338453431832254946862081270079334951203, which is larger than all previous values MD5("0"), ..., MD5("82").
-
recordsBy[l_, P_] :=
Module[{max = -Infinity, x, i, recs = {}},
For[i = 1, i <= Length[l], i++,
x = P[l[[i]]];
If[x > max,
max = x;
AppendTo[recs, l[[i]]];
]
];
recs
];
recordsBy[Range[1000], Hash[ToString[#], "MD5"] &]
-
from hashlib import md5
def afind(limit):
record = ""
for k in range(limit+1):
hash = md5(str(k).encode('utf-8')).hexdigest()
if hash > record:
print(k, end=", ")
record = hash
afind(10**5) # Michael S. Branicky, Nov 24 2021
A346737
Number of configurations of the 5 X 3 variant of the sliding block 15-puzzle that require a minimum of n moves to be reached, starting with the empty square in one of the corners.
Original entry on oeis.org
1, 2, 4, 9, 21, 42, 89, 164, 349, 644, 1349, 2473, 5109, 9110, 18489, 32321, 64962, 112445, 223153, 378761, 740095, 1231589, 2364342, 3847629, 7246578, 11506172, 21233764, 32854049, 59293970, 89146163, 157015152, 228894783, 392648931, 553489877, 922382155
Offset: 0
Starting from the solved configuration
1 2 3 4 5
6 7 8 9 10
11 12 13 14
the unique configuration requiring 84 moves is
5 4 3 2 1
10 9 8 7 6
14 13 12 11
Comments