A362867 Irregular triangle read by rows; the n-th row is the n-th permutation of 0 to infinity, in reversed colexicographic ordering, terminating when the rest of the row equals k.
0, 1, 0, 0, 2, 1, 2, 0, 1, 1, 2, 0, 2, 1, 0, 0, 1, 3, 2, 1, 0, 3, 2, 0, 3, 1, 2, 3, 0, 1, 2, 1, 3, 0, 2, 3, 1, 0, 2, 0, 2, 3, 1, 2, 0, 3, 1, 0, 3, 2, 1, 3, 0, 2, 1, 2, 3, 0, 1, 3, 2, 0, 1, 1, 2, 3, 0, 2, 1, 3, 0, 1, 3, 2, 0, 3, 1, 2, 0, 2, 3, 1, 0, 3, 2, 1, 0
Offset: 0
Examples
The irregular triangle begins (the numbers enclosed in square brackets are the continuation of the row): n/k 0, 1, 2, 3, 4, 5, ... 0 | 0 [1, 2, 3, 4, 5, ...] 1 | 1, 0 [2, 3, 4, 5, ...] 2 | 0, 2, 1 [3, 4, 5, ...] 3 | 2, 0, 1 [3, 4, 5, ...] 4 | 1, 2, 0 [3, 4, 5, ...] 5 | 2, 1, 0 [3, 4, 5, ...] 6 | 0, 1, 3, 2 [4, 5, ...] 7 | 1, 0, 3, 2 [4, 5, ...] 8 | 0, 3, 1, 2 [4, 5, ...] 9 | 3, 0, 1, 2 [4, 5, ...] 10 | 1, 3, 0, 2 [4, 5, ...]
Links
- Davis Smith, A Sufficient Condition for Normalcy.
Programs
-
PARI
A362867_row(n)=my(N=n,m=0);while(N\=m++, );Vecrev(vecextract(abs([-(m-1)..0]),numtoperm(m,n)))
Formula
A(n,k) = A055089(n,k) - 1.
Comments