A353214 a(n) = 2^A007013(4) mod prime(n); the last term of this sequences is when a(n) = 1.
0, -1, -2, 2, -4, -2, -8, 2, -5, -2, 4, -2, 5, 2, -11, -20, -22, 6, -23, -21, 2, -3, -16, -25, -31, 40, 19, -29, -2, -2, 2, -49, 19, 68, -56, -23, -59, 45, 29, -2, 62, 63, 27, 54, -2, -22, -46, 28, -85, -2, -29, 17, -113, -4, -128, -65, -46, 20, -51, -98, -64
Offset: 1
Links
- Chris K. Caldwell, Mersenne Primes: History, Theorems and Lists (5. Conjectures and Unsolved Problems).
- I. S. Eum, A congruence relation of the Catalan-Mersenne numbers, Indian J Pure Appl Math, 49 (2018), 521-526.
- Robert Delion, The n2 + 1 Fermat and Mersenne prime numbers conjectures are resolved, Theoretical Mathematics & Applications, vol.6, no.1, 2016, 15-37.
Programs
-
PARI
A353214(n)=my(CM4=shift(1,127)-1);centerlift(Mod(2,prime(n))^CM4)
Formula
a(n) = 2^(2^127 - 1) mod prime(n).
Comments