Alexander D. Healy has authored 10 sequences.
A369692
Connected domination number of the n X n grid graph.
Original entry on oeis.org
1, 2, 3, 7, 11, 14, 20, 26, 30, 39, 47, 52, 64, 74, 80, 95
Offset: 1
From _Andrew Howroyd_, Mar 06 2024: (Start)
a(16) = 95 = 16 + 5*14 + 4*2 + 1.
. . . . . . . . . . . . . . . .
X X X X X X X X X X X X X X X X
. X . . X . . X . . X . . X . .
. X . . X . . X . . X . . X . .
. X . . X . . X . . X . . X X X
. X . . X . . X . . X . . X . .
. X . . X . . X . . X . . X . .
. X . . X . . X . . X . . X X X
. X . . X . . X . . X . . X . .
. X . . X . . X . . X . . X . .
. X . . X . . X . . X . . X X X
. X . . X . . X . . X . . X . .
. X . . X . . X . . X . . X . .
. X . . X . . X . . X . . X X X
. X . . X . . X . . X . . X . .
. X . . X . . X . . X . . X X .
(End)
Cf.
A381730 (numbers of minimum connected dominating sets).
A370428
Connected domination number of the n X n king graph.
Original entry on oeis.org
1, 1, 1, 4, 5, 8, 12, 15, 20, 24, 28, 33, 39, 46, 52, 58
Offset: 1
Cf.
A382206 (numbers of minimum connected dominating sets).
A355477
Maximum number of skew-tetrominoes that can be packed into an n X n square.
Original entry on oeis.org
0, 0, 1, 3, 4, 8, 9, 14, 16, 23, 25, 33, 36, 46, 49, 60, 64, 77, 81, 96, 100
Offset: 1
a(8) = 14 by the following packing of 14 skew-tetrominoes into an 8 X 8 square:
_______________
|_|1 _| |___| |_|
|___| 2_|3 _|_4 |
|_ 5|_|___| | |_|
| |___| | 6_|_7 |
|_8 | 9_|_|_10|_|
| |_|_|11_| |___|
|_12|___|13_|14_|
|_|_|___|_|___|_|
A348574
Length of the shortest string over the alphabet {1,...,n} such that every subset of {1,...,n} appears as a substring (in some order).
Original entry on oeis.org
1, 2, 4, 8, 13, 24, 40
Offset: 1
a(4) = 8 because the string 12342413 contains every subset of {1,2,3,4} as a substring -- e.g., {1,3,4} can be found in the last three symbols ('413') -- and it can be shown that no string of length 7 has this property (see, e.g., Lipski 1978).
Examples of optimal strings for n <= 7:
1: 1
2: 12
3: 1231
4: 12342413
5: 1234512413524
6: 123415643641253624531625
7: 1234567214573126431523674256147325716357
- I. Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987, pp. 39-40.
A061713
Number of closed walks of length n on a 3 X 3 X 3 Rubik's Cube.
Original entry on oeis.org
1, 0, 18, 36, 720, 3600, 42624, 312480, 3148032, 27073152, 261446688, 2407791936, 23168736768, 220481838720, 2137258661472
Offset: 0
There are 18 closed walks of length 2: F*F^(-1), F^2*F^2, F^(-1)*F, R*R^(-1), R^(-1)*R, R^2*R^2 . . ., D*D^(-1), D^(-1)*D, D^2*D^2.
Original entry on oeis.org
0, 0, 32, 0, 328, 2976, 25512, 124352, 758752, 4852448, 26735408, 145945312, 805129880, 4334341216, 22824469832, 119276925152, 617722010896, 3163151197504, 16059782780784, 80965219241952, 405344545960912
Offset: 1
A080583
Number of positions that the 3 X 3 X 3 Rubik cube puzzle can be in after exactly n moves.
Original entry on oeis.org
1, 18, 262, 3502, 46741, 621649, 8240087, 109043123, 1441386411, 19037866206, 251285929522, 3314574738534, 43689000394782, 575342418679410
Offset: 0
A060010
Number of 2n-move sequences on the 3 X 3 X 3 Rubik's Cube (only quarter-twists count as moves) that leave the cube unchanged.
Original entry on oeis.org
1, 12, 312, 10464, 398208, 16323072, 702465024
Offset: 0
There are 12 closed walks of length 2: F*F^(-1), F^(-1)*F, R*R^(-1), R^(-1)*R, ..., D*D^(-1), D^(-1)*D.
A060200
Number of Sophie Germain primes <= prime(2^n).
Original entry on oeis.org
2, 3, 4, 8, 12, 20, 32, 54, 94, 170, 297, 549, 1017, 1895, 3505, 6577, 12388, 23565, 44891, 85922, 164299, 314173, 602624, 1158231, 2232286
Offset: 1
The first four primes are 2, 3, 5 and 7. Three of these are Sophie Germain primes (since 2*2 + 1 = 5, 2*3 + 1 = 7 and 2*5 + 1 = 11 are prime, but 2*7 + = 15). Therefore the second value in the sequence is 3.
-
<< NumberTheory`NumberTheoryFunctions` cnt = 0; currentPrime = 1; For[ i = 1, i == i, i ++, currentPrime = NextPrime[ currentPrime ]; If[ PrimeQ[ 2*currentPrime + 1 ], cnt++ ]; If[ IntegerQ[ Log[ 2, i ] ], Print[ cnt ] ]; ]
A061712
Smallest prime with Hamming weight n (i.e., with exactly n 1's when written in binary).
Original entry on oeis.org
2, 3, 7, 23, 31, 311, 127, 383, 991, 2039, 3583, 6143, 8191, 73727, 63487, 129023, 131071, 522239, 524287, 1966079, 4128767, 16250879, 14680063, 33546239, 67108351, 201064447, 260046847, 536739839, 1073479679, 5335154687, 2147483647, 8581545983, 16911433727, 32212254719
Offset: 1
The fourth term is 23 (10111 in binary), since no prime less than 23 has exactly 4 1's in its binary representation.
- Charles R Greathouse IV, Table of n, a(n) for n = 1..3320 (first 1024 terms from T. D. Noe)
- Michael Drmota, Christian Mauduit, and Joel Rivat, Primes with an average sum of digits, Compositio Mathematica 145 (2009), pp. 271-292.
- Kenichiro Kashihara, Letter to the Editor, Math. Scientist 20 (1) (1995), 67-68.
- MathOverflow, Are there primes of every Hamming weight?
- Samuel S. Wagstaff, Prime numbers with a fixed number of one bits or zero bits in their binary representation, Experimental Mathematics 10 (2001), pp. 267-273.
-
a061712 n = fromJust $ find ((== n) . a000120) a000040_list
-- Reinhard Zumkeller, Feb 10 2013
-
with(combstruct):
a:=proc(n) local m,is,s,t,r; if n=1 then return 2 fi; r:=+infinity; for m from 0 to 100 do is := iterstructs(Combination(n-2+m),size=n-2); while not finished(is) do s := nextstruct(is); t := 2^(n-1+m)+1+add(2^i,i=s); # print(s,t);
if isprime(t) then r:=min(t,r) fi; od; if r<+infinity then return r fi; od; return 0; end: seq(a(n),n=1..60); # Max Alekseyev, Aug 03 2005
-
Do[k = 1; While[ Count[ IntegerDigits[ Prime[k], 2], 1] != n, k++ ]; Print[ Prime[k]], {n, 1, 30} ]
(* Second program: *)
a[n_] := Module[{m, s, k, p}, For[m=0, True, m++, s = {1, Sequence @@ #, 1} & /@ Permutations[Join[Table[1, {n-2}], Table[0, {m}]]] // Sort; For[k=1, k <= Length[ s], k++, p = FromDigits[s[[k]], 2]; If[PrimeQ[p], Print["a(", n, ") = ", p]; Return[p]]]]]; a[1] = 2; Array[a, 100] (* Jean-François Alcover, Mar 16 2015 *)
Module[{hw=Table[{n,DigitCount[n,2,1]},{n,Prime[Range[250*10^6]]}]}, Table[ SelectFirst[hw,#[[2]]==k&],{k,31}]][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 01 2019 *)
-
a(n)=forprime(p=2, , if (hammingweight(p) == n, return(p));); \\ Michel Marcus, Mar 16 2015
-
from itertools import combinations
from sympy import isprime
def A061712(n):
l, k = n-1, 2**n
while True:
for d in combinations(range(l-1,-1,-1),l-n+1):
m = k-1 - sum(2**(e) for e in d)
if isprime(m):
return m
l += 1
k *= 2 # Chai Wah Wu, Sep 02 2021
Comments