A054453 Triangle of partial row sums of triangle A054450(n,m), n >= m >= 0.
1, 2, 1, 4, 2, 1, 8, 5, 2, 1, 15, 10, 6, 2, 1, 28, 20, 12, 7, 2, 1, 51, 38, 26, 14, 8, 2, 1, 92, 71, 50, 33, 16, 9, 2, 1, 164, 130, 97, 64, 41, 18, 10, 2, 1, 290, 235, 180, 130, 80, 50, 20, 11, 2, 1, 509, 420, 332, 244, 171, 98, 60, 22, 12, 2, 1
Offset: 0
Examples
{1}; {2,1}; {4,2,1}; {8,5,2,1};... Fourth row polynomial (n=3): p(3,x)= 8+5*x+2*x^2+x^3
Links
- Gregg Musiker, Nick Ovenhouse, and Sylvester W. Zhang, Double Dimers and Super Ptolemy Relations, Séminaire Lotharingien de Combinatoire XX, Proc. 35th Conf. Formal Power, Series and Algebraic Combinatorics (Davis) 2023, Art. #YY. See p. 12.
Formula
A091594 Triangle read by rows: T(n,m) := Sum_{k=0..floor((n-m)/2)} binomial(n-2k,m) * binomial(n-m-k,k).
1, 1, 1, 2, 2, 1, 3, 4, 3, 1, 5, 8, 7, 4, 1, 8, 15, 16, 11, 5, 1, 13, 28, 34, 28, 16, 6, 1, 21, 51, 70, 66, 45, 22, 7, 1, 34, 92, 140, 148, 116, 68, 29, 8, 1, 55, 164, 274, 320, 281, 190, 98, 37, 9, 1, 89, 290, 527, 672, 651, 494, 295, 136, 46, 10, 1, 144, 509, 999, 1379, 1456, 1219, 819, 439, 183, 56, 11, 1
Offset: 0
Comments
A Fibonacci related number triangle.
Examples
Rows begin: 1, 1, 1, 2, 2, 1, 3, 4, 3, 1, 5, 8, 7, 4, 1, 8, 15, 16, 11, 5, 1, 13, 28, 34, 28, 16, 6, 1, 21, 51, 70, 66, 45, 22, 7, 1, ...
Links
- Seiichi Manyama, Rows n = 0..139, flattened
Formula
k-th column has g.f. 1/(1-x-x^2) * ( x*(1-x^2)/(1-x-x^2) )^k.
Comments