A054456 Convolution triangle of A000129(n) (Pell numbers).
1, 2, 1, 5, 4, 1, 12, 14, 6, 1, 29, 44, 27, 8, 1, 70, 131, 104, 44, 10, 1, 169, 376, 366, 200, 65, 12, 1, 408, 1052, 1212, 810, 340, 90, 14, 1, 985, 2888, 3842, 3032, 1555, 532, 119, 16, 1, 2378, 7813, 11784, 10716, 6482, 2709, 784, 152, 18, 1, 5741, 20892, 35223
Offset: 0
Examples
Fourth row polynomial (n=3): p(3,x)= 12+14*x+6*x^2+x^3 Triangle begins: {1}, {2, 1}, {5, 4, 1}, {12, 14, 6, 1}, {29, 44, 27, 8, 1}, {70, 131,104, 44, 10, 1}, {169, 376, 366, 200, 65, 12, 1}, {408, 1052, 1212, 810, 340, 90, 14, 1}, {985, 2888, 3842, 3032, 1555, 532, 119, 16, 1}, {2378, 7813, 11784, 10716, 6482, 2709, 784, 152, 18, 1}, {5741, 20892, 35223, 36248, 25235, 12432, 4396, 1104, 189, 20, 1}, The triangle (0, 2, 1/2, -1/2, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, ...) begins: 1 0, 1 0, 2, 1 0, 5, 4, 1 0, 12, 14, 6, 1 0, 29, 44, 27, 8, 1 - _Philippe Deléham_, Feb 19 2013
Links
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
Programs
-
Maple
G := 1/(1-(x+2)*z-z^2): Gser := simplify(series(G, z = 0, 18)): for n from 0 to 15 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 15 do seq(coeff(P[n], x, j), j = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Aug 30 2015 T := (n,k) -> `if`(n=0,1,2^(n-k)*binomial(n,k)*hypergeom([(k-n)/2,(k-n+1)/2],[-n], -1)): seq(seq(simplify(T(n,k)),k=0..n),n=0..10); # Peter Luschny, Apr 25 2016 # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left. PMatrix(10, A000129); # Peter Luschny, Oct 19 2022
-
Mathematica
P[x_, 0] := 1; P[x_, 1] := 2 - x; P[x_, n_] := P[x, n] = (2 - x) P[x, n - 1] + P[x, n - 2]; Table[Abs@ CoefficientList[P[x, n], x], {n, 0, 10}] // Flatten (* Roger L. Bagula, Mar 24 2008, edited by Michael De Vlieger, Apr 25 2018 *)
Formula
a(n, m) := ((n-m+1)*a(n, m-1) + (n+m)*a(n-1, m-1))/(4*m), n >= m >= 1, a(n, 0)= P(n+1)= A000129(n+1) (Pell numbers without P(0)), a(n, m) := 0 if n
G.f. for column m: Pell(x)*(x*Pell(x))^m, m >= 0, with Pell(x) G.f. for A000129(n+1).
Number triangle T(n, k) with T(n, 0)=A000129(n), T(1, 1)=1, T(n, k)=0 if k>n, T(n, k)=T(n-1, k-1)+T(n-2, k)+2T(n-1, k) otherwise; T(n, k)=if(k<=n, sum{j=0..floor((n-k)/2), C(n-j, k)C(n-k-j, j)2^(n-2j-k)}; - Paul Barry, Mar 15 2005
Bivariate g.f. G(x,z) = 1/[1 - (2 + x)z - z^2]. G.f. for column k = z^k/(1 - 2z - z^2)^{k+1} (k>=0). - Emeric Deutsch, Aug 30 2015
T(n,k) = 2^(n-k)*C(n,k)*hypergeom([(k-n)/2,(k-n+1)/2],[-n],-1)) for n>=1. - Peter Luschny, Apr 25 2016
Comments