A054494 Largest Fibonacci factor of n.
1, 2, 3, 2, 5, 3, 1, 8, 3, 5, 1, 3, 13, 2, 5, 8, 1, 3, 1, 5, 21, 2, 1, 8, 5, 13, 3, 2, 1, 5, 1, 8, 3, 34, 5, 3, 1, 2, 13, 8, 1, 21, 1, 2, 5, 2, 1, 8, 1, 5, 3, 13, 1, 3, 55, 8, 3, 2, 1, 5, 1, 2, 21, 8, 13, 3, 1, 34, 3, 5, 1, 8, 1, 2, 5, 2, 1, 13, 1, 8, 3, 2, 1, 21, 5, 2, 3, 8, 89, 5, 13, 2, 3, 2, 5, 8, 1, 2, 3, 5
Offset: 1
Examples
a(10)=5 because 1, 2 and 5 are the Fibonacci numbers which divide 10 and 5 is the largest.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
With[{fibs=Fibonacci[Range[20]]},Table[Max[Select[fibs,Divisible[ n,#]&]],{n,100}]] (* Harvey P. Dale, Jul 17 2012 *)
-
PARI
A010056(n)=my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)) a(n)=fordiv(n,d,if(A010056(n/d), return(n/d))) \\ Charles R Greathouse IV, Nov 05 2014
-
Python
from sympy import divisors from sympy.ntheory.primetest import is_square def A054494(n): return next(d for d in sorted(divisors(n,generator=True),reverse=True) if is_square(m:=5*d**2-4) or is_square(m+8)) # Chai Wah Wu, May 06 2024
Formula
a(n) = n/A054495(n).
Extensions
Corrected by Harvey P. Dale, Jul 17 2012