cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A054505 Log_b 2 where b is smallest primitive root (A001918) mod n-th prime.

Original entry on oeis.org

1, 1, 2, 1, 1, 14, 1, 2, 1, 24, 1, 26, 27, 18, 1, 1, 1, 1, 6, 8, 4, 1, 16, 34, 1, 44, 1, 57, 12, 72, 1, 10, 1, 1, 70, 141, 1, 40, 1, 1, 1, 44, 34, 1, 106, 1, 180, 1, 21, 72, 66, 190, 235, 48, 190, 1, 154, 147, 204, 159, 1, 93, 22, 274, 1, 121, 304, 1, 1, 164, 314, 292, 1, 1, 134, 1
Offset: 2

Views

Author

N. J. A. Sloane, Apr 09 2000

Keywords

Examples

			Smallest primitive root mod 7 is 3; 2 = 3^2 mod 7; 7 is 4th prime; so a(4) = 2.
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, Table 10.2, pp. 216-217.

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p, b, lg = 1}, b = PrimitiveRoot[p = Prime[n]]; While[ PowerMod[b, lg, p] != 2 , lg++]; lg]; Array[a, 100, 2] (* Jean-François Alcover, Sep 03 2016 *)

Extensions

More terms from James Sellers, Apr 09 2000

A054513 Log_b 10 where b is smallest primitive root (A001918) mod n-th prime.

Original entry on oeis.org

5, 10, 3, 17, 3, 23, 14, 24, 8, 10, 19, 48, 7, 23, 16, 34, 9, 66, 28, 86, 35, 25, 45, 48, 25, 95, 33, 47, 85, 87, 105, 32, 142, 16, 41, 40, 139, 157, 94, 35, 90, 46, 133, 47, 12, 119, 5, 204, 88, 115, 103, 191, 209, 54, 148, 110, 110, 174, 94, 218, 1, 244, 27, 1, 278, 315
Offset: 5

Views

Author

N. J. A. Sloane, Apr 09 2000

Keywords

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, Table 10.2, pp. 216-217.

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p, b, lg = 1}, b = PrimitiveRoot[p = Prime[n]]; While[ PowerMod[b, lg, p] != 10, lg++]; lg]; Array[a, 100, 5] (* Jean-François Alcover, Sep 03 2016 *)
  • PARI
    a(n)=znlog(10,znprimroot(prime(n))) \\ Charles R Greathouse IV, Oct 03 2011

Extensions

More terms from James Sellers, Apr 09 2000

A054506 Log_b 3 where b is smallest primitive root (A001918) mod n-th prime.

Original entry on oeis.org

3, 1, 8, 4, 1, 13, 16, 5, 1, 26, 15, 1, 20, 17, 50, 6, 39, 26, 6, 1, 72, 1, 70, 69, 39, 70, 52, 1, 1, 72, 1, 41, 87, 81, 82, 101, 94, 27, 108, 56, 116, 84, 181, 1, 43, 1, 46, 208, 1, 74, 182, 16, 1, 50, 109, 117, 188, 1, 1, 157, 81, 164, 56, 249, 1, 314, 152, 26, 1, 186, 75
Offset: 3

Views

Author

N. J. A. Sloane, Apr 09 2000

Keywords

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, Table 10.2, pp. 216-217.

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p, b, lg = 1}, b = PrimitiveRoot[p = Prime[n]]; While[ PowerMod[b, lg, p] != 3 , lg++]; lg]; Array[a, 100, 3] (* Jean-François Alcover, Sep 03 2016 *)

Extensions

More terms from James Sellers, Apr 09 2000

A054507 Log_b 4 where b is smallest primitive root (A001918) mod n-th prime.

Original entry on oeis.org

2, 4, 2, 2, 12, 2, 4, 2, 18, 2, 12, 12, 36, 2, 2, 2, 2, 12, 16, 8, 2, 32, 68, 2, 88, 2, 6, 24, 18, 2, 20, 2, 2, 140, 126, 2, 80, 2, 2, 2, 88, 68, 2, 14, 2, 138, 2, 42, 144, 132, 140, 220, 96, 118, 2, 38, 18, 128, 36, 2, 186, 44, 236, 2, 242, 272, 2, 2, 328, 270, 218, 2, 2, 268, 2
Offset: 3

Views

Author

N. J. A. Sloane, Apr 09 2000

Keywords

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, Table 10.2, pp. 216-217.

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p, b, lg = 1}, b = PrimitiveRoot[p = Prime[n]]; While[ PowerMod[b, lg, p] != 4, lg++]; lg]; Array[a, 100, 3] (* Jean-François Alcover, Sep 03 2016 *)

Extensions

More terms from James Sellers, Apr 09 2000

A054509 Log_b 6 where b is smallest primitive root (A001918) mod n-th prime.

Original entry on oeis.org

3, 9, 5, 15, 14, 18, 6, 25, 27, 1, 28, 38, 18, 51, 7, 40, 32, 14, 5, 73, 17, 8, 70, 83, 71, 1, 13, 73, 73, 11, 42, 88, 1, 67, 102, 134, 28, 109, 57, 160, 118, 182, 107, 44, 181, 47, 1, 73, 140, 132, 1, 49, 240, 110, 1, 59, 205, 160, 158, 174, 186, 18, 250, 122, 282, 153
Offset: 4

Views

Author

N. J. A. Sloane, Apr 09 2000

Keywords

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, Table 10.2, pp. 216-217.

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p, b, lg = 1}, b = PrimitiveRoot[p = Prime[n]]; While[ PowerMod[b, lg, p] != 6, lg++]; lg]; Array[a, 100, 4] (* Jean-François Alcover, Sep 03 2016 *)

Extensions

More terms from James Sellers, Apr 09 2000

A054510 Log_b 7 where b is smallest primitive root (A001918) mod n-th prime.

Original entry on oeis.org

7, 11, 11, 6, 19, 12, 28, 32, 39, 35, 32, 14, 18, 49, 23, 1, 33, 53, 8, 81, 31, 9, 4, 43, 40, 8, 115, 96, 42, 50, 142, 67, 147, 73, 118, 95, 171, 15, 171, 104, 146, 142, 139, 210, 154, 107, 222, 1, 1, 248, 85, 79, 19, 142, 22, 182, 278, 213, 116, 140, 123, 50, 81, 318
Offset: 5

Views

Author

N. J. A. Sloane, Apr 09 2000

Keywords

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, Table 10.2, pp. 216-217.

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p, b, lg = 1}, b = PrimitiveRoot[p = Prime[n]]; While[ PowerMod[b, lg, p] != 7, lg++]; lg]; Array[a, 100, 5] (* Jean-François Alcover, Sep 03 2016 *)

Extensions

More terms from James Sellers, Apr 09 2000

A054511 Log_b 8 where b is smallest primitive root (A001918) mod n-th prime.

Original entry on oeis.org

3, 3, 10, 3, 6, 3, 12, 3, 38, 39, 8, 3, 3, 3, 3, 18, 24, 12, 3, 48, 6, 3, 30, 3, 63, 36, 90, 3, 30, 3, 3, 60, 111, 3, 120, 3, 3, 3, 132, 102, 3, 120, 3, 96, 3, 63, 216, 198, 90, 205, 144, 46, 3, 192, 165, 52, 195, 3, 279, 66, 198, 3, 33, 240, 3, 3, 140, 226, 144, 3, 3, 20, 3
Offset: 5

Views

Author

N. J. A. Sloane, Apr 09 2000

Keywords

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, Table 10.2, pp. 216-217.

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p, b, lg = 1}, b = PrimitiveRoot[p = Prime[n]]; While[ PowerMod[b, lg, p] != 8, lg++]; lg]; Array[a, 100, 5] (* Jean-François Alcover, Sep 03 2016 *)

Extensions

More terms from James Sellers, Apr 09 2000

A054512 Log_b 9 where b is smallest primitive root (A001918) mod n-th prime.

Original entry on oeis.org

6, 8, 2, 8, 10, 10, 2, 16, 30, 2, 40, 34, 42, 12, 12, 52, 12, 2, 62, 2, 44, 38, 78, 34, 104, 2, 2, 14, 2, 82, 26, 12, 8, 40, 22, 54, 38, 112, 42, 168, 166, 2, 86, 2, 92, 188, 2, 148, 124, 32, 2, 100, 218, 234, 100, 2, 2, 22, 162, 18, 112, 182, 2, 292, 304, 52, 2, 14, 150, 104
Offset: 5

Views

Author

N. J. A. Sloane, Apr 09 2000

Keywords

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, Table 10.2, pp. 216-217.

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p, b, lg = 1}, b = PrimitiveRoot[p = Prime[n]]; While[ PowerMod[b, lg, p] != 9, lg++]; lg]; Array[a, 100, 5] (* Jean-François Alcover, Sep 03 2016 *)

Extensions

More terms from James Sellers, Apr 09 2000
Showing 1-8 of 8 results.